Trang chủ Lớp 10 SBT Toán 10 - Kết nối tri thức Giải bài 4.66 trang 71 sách bài tập toán 10 – Kết...

Giải bài 4.66 trang 71 sách bài tập toán 10 - Kết nối tri thức...

Giải bài 4.66 trang 71 sách bài tập toán 10 - Kết nối tri thức với cuộc sống - Bài tập cuối chương IV : cho bốn điểm \(A,\,\,B,\,\,C,\,\,D\) trong mặt phẳng. Chứng minh rằng \(\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BD}  = 0.\)

Question - Câu hỏi/Đề bài

Cho bốn điểm \(A,\,\,B,\,\,C,\,\,D\) trong mặt phẳng. Chứng minh rằng

\(\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BD}  = 0.\)

Answer - Lời giải/Đáp án

Ta có: \(\overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD} \)

\(\overrightarrow {CA}  = \overrightarrow {BA}  - \overrightarrow {BC} \)

Advertisements (Quảng cáo)

\(\overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {CD} \)

Ta có:

\(\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BD}  = \overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {BC} \left( {\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD} } \right) + \left( {\overrightarrow {BA}  - \overrightarrow {BC} } \right)\left( {\overrightarrow {BC}  + \overrightarrow {CD} } \right)\)

\( = \overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {BC} .\overrightarrow {AB}  + {\overrightarrow {BC} ^2} + \overrightarrow {BC} .\overrightarrow {CD}  + \overrightarrow {BA} .\overrightarrow {BC}  + \overrightarrow {BA} .\overrightarrow {CD}  - {\overrightarrow {BC} ^2} - \overrightarrow {BC} .\overrightarrow {CD} \)

\( = \left( {\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {BA} .\overrightarrow {CD} } \right) + \left( {\overrightarrow {BC} .\overrightarrow {AB}  + \overrightarrow {BA} .\overrightarrow {BC} } \right) + \left( {{{\overrightarrow {BC} }^2} - {{\overrightarrow {BC} }^2}} \right) + \left( {\overrightarrow {BC} .\overrightarrow {CD}  - \overrightarrow {BC} .\overrightarrow {CD} } \right) = 0\)

\( \Rightarrow \,\,\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BD}  = 0\) (đpcm)