Trang chủ Lớp 10 SBT Toán 10 - Kết nối tri thức Giải bài 7.20 trang 41 sách bài tập toán 10 – Kết...

Giải bài 7.20 trang 41 sách bài tập toán 10 - Kết nối tri thức...

Giải bài 7.20 trang 41 sách bài tập toán 10 - Kết nối tri thức với cuộc sống - Bài 21. Đường tròn trong mặt phẳng tọa độ

Question - Câu hỏi/Đề bài

Phương trình nào dưới đây là phương trình của một đường tròn? Khi đó hãy tìm tâm và bán kính của nó

a) \({x^2} + 2{y^2} - 4x - 2y + 1 = 0\)

b) \({x^2} + {y^2} - 4x + 3y + 2xy = 0\)

c) \({x^2} + {y^2} - 8x - 6y + 26 = 0\)

d) \({x^2} + {y^2} + 6x - 4y + 13 = 0\)

e) \({x^2} + {y^2} - 4x + 2y + 1 = 0\)

Phương trình: \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình đường tròn khi: \({a^2} + {b^2} - c > 0\) khi đó \(I\left( {a;b} \right),R = \sqrt {{a^2} + {b^2} - c} \)

Answer - Lời giải/Đáp án

a) \({x^2} + 2{y^2} - 4x - 2y + 1 = 0\)

Phương trình đã cho không là phương trình của đường tròn vì hệ số của \({x^2}\) và \({y^2}\) không bằng nhau

b) \({x^2} + {y^2} - 4x + 3y + 2xy = 0\)

Advertisements (Quảng cáo)

Phương trình đã cho không là phương trình của đường tròn, vì trong phương trình đường tròn không chứa \(xy\)

c) \({x^2} + {y^2} - 8x - 6y + 26 = 0\)

+ Phương trình đã cho có các hệ số \(a = 4,b = 3,c = 26\)

+ Tính \({a^2} + {b^2} - c = {3^2} + {4^2} - 26 =  - 1 < 0\)

\(\Rightarrow \) Đây không phải là phương trình của đường tròn

d) \({x^2} + {y^2} + 6x - 4y + 13 = 0\)

+ Phương trình đã cho có các hệ số \(a =  - 3,b = 2,c = 13\)

+ Tính \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 13 = 0\)

\(\Rightarrow \) Đây không phải là phương trình của đường tròn

e) \({x^2} + {y^2} - 4x + 2y + 1 = 0\)

+ Phương trình đã cho có các hệ số \(a = 2,b =  - 1,c = 1\)

+ Tính \({a^2} + {b^2} - c = {2^2} + {\left( { - 1} \right)^2} - 1 = 4 > 0\), nên phương trình của đường tròn có tâm \(I\left( {2; - 1} \right)\) và bán kính \(R = \sqrt 4  = 2\)