Trang chủ Lớp 10 SBT Toán 10 - Kết nối tri thức Bài 9.15 trang 67 SBT Toán lớp 10 Kết nối tri thức:...

Bài 9.15 trang 67 SBT Toán lớp 10 Kết nối tri thức: Gieo hai con xúc xắc cân đối....

Giải bài 9.15 trang 67 sách bài tập toán 10 - Kết nối tri thức với cuộc sống - Bài tập cuối chương IX

Question - Câu hỏi/Đề bài

Gieo hai con xúc xắc cân đối.

a) Xác suất để có đúng 1 con xúc xắc xuất hiện mặt 6 chấm là:

A. \(\frac{{11}}{{36}}\).               B. \(\frac{1}{3}\).                C. \(\frac{5}{{18}}\).                      D.\(\frac{4}{9}\).

b) Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc

bằng 7 là:

A. \(\frac{{11}}{{36}}\).               B. \(\frac{7}{{12}}\).                      C. \(\frac{5}{{11}}\).                      D.\(\frac{4}{9}\).

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Answer - Lời giải/Đáp án

Ta có \(n\left( \Omega  \right) = 6.6 = 36\).

Advertisements (Quảng cáo)

a) Gọi A là biến cố “có đúng một con xúc xắc xuất hiện mặt 6 chấm”.

Thực hiện hai công đoạn:

+ Chọn một trong hai con xúc xắc xuất hiện mặt 6 chấm: có 2 cách

+ Xúc xắc còn lại có 5 cách xuất hiện số chấm (trừ mặt 6 chấm).

 Suy ra \(n\left( A \right) = 2.5 = 10\).

Vậy  \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{10}}{{36}} = \frac{5}{{18}}\)

Chọn C

b) Gọi A là biến cố “tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 7”.

Số chấm xuất hiện trên 2 xúc xắc có thể là

 \(\begin{array}{l}\left( {1;1} \right),\left( {1;2} \right),\left( {1;3} \right),\left( {1;4} \right),\left( {1;5} \right),\left( {1;6} \right),\\\left( {2;1} \right),\left( {2;2} \right),\left( {2;3} \right),\left( {2;4} \right),\left( {2;5} \right),\\\left( {3;1} \right),\left( {3;2} \right),\left( {3;3} \right),\left( {3;4} \right),\\\left( {4;1} \right),\left( {4;2} \right),\left( {4;3} \right),\\\left( {5;1} \right),\left( {5;2} \right),\\\left( {6;1} \right)\end{array}\)

Suy ra \(n\left( A \right) = 6 + 5 + 4 + 3 + 2 + 1 = 21\).

Vậy  \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}\).

Chọn B

Advertisements (Quảng cáo)