Chứng minh rằng
a) \(\sin ({270^0} - \alpha ) = - c{\rm{os}}\alpha \)
b) \({\rm{cos}}({270^0} - \alpha ) = - \sin \alpha \)
c) \(\sin ({270^0} + \alpha ) = - c{\rm{os}}\alpha \)
d) \({\rm{cos}}({270^0} + \alpha ) = \sin \alpha \)
Advertisements (Quảng cáo)
Gợi ý làm bài
a) \(\eqalign{
& \sin ({270^0} - \alpha ) = \sin ({360^0} - ({90^0} + \alpha ) \cr
& = - sin({90^0} + \alpha ) = - c{\rm{os}}\alpha \cr}\)
b) \(\eqalign{
& \cos ({270^0} - \alpha ) = \cos ({360^0} - ({90^0} + \alpha )) \cr
& = \cos ({90^0} + \alpha ) = - {\rm{sin}}\alpha \cr} \)
c) \(\eqalign{
& \sin ({270^0} + \alpha ) = \sin ({360^0} - ({90^0} - \alpha )) \cr
& = - \sin ({90^0} - \alpha ) = - c{\rm{os}}\alpha \cr} \)
d) \(\eqalign{
& {\rm{cos}}({270^0} + \alpha ) = \cos ({360^0} - ({90^0} - \alpha ) \cr
& = cos({90^0} - \alpha ) = \sin \alpha \cr} \)