Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 31 trang 196 SBT Toán Đại số 10: Rút gọn các...

Bài 31 trang 196 SBT Toán Đại số 10: Rút gọn các biểu thức (không dùng bảng số và máy...

Rút gọn các biểu thức (không dùng bảng số và máy tính). Bài 31 trang 196 Sách bài tập (SBT) Toán Đại số 10 - Bài tập ôn tập chương VI

Rút gọn các biểu thức (không dùng bảng số và máy tính)

a) \({\sin ^2}({180^0} - \alpha ) + ta{n^2}({180^0} - \alpha ){\tan ^2}({270^0} - \alpha ) + \sin ({90^0} + \alpha )cos(\alpha  - {360^0})\)

b) \({{\cos (\alpha  - {{90}^0})} \over {\sin ({{180}^0} - \alpha )}} + {{\tan (\alpha  - {{180}^0})c{\rm{os(18}}{{\rm{0}}^0} + \alpha )\sin ({{270}^0} + \alpha )} \over {\tan ({{270}^0} + \alpha )}}\)

c) \({{\cos ( - {{288}^0})cot{{72}^0}} \over {tan( - {{162}^0})\sin {{108}^0}}} + \tan {18^0}\)

d) \({{\sin {{20}^0}\sin {\rm{3}}{{\rm{0}}^0}\sin {{40}^0}\sin {{50}^0}\sin {{60}^0}\sin {{70}^0}} \over {cos{{10}^0}{\rm{cos5}}{{\rm{0}}^0}}}\)

Gợi ý làm bài

a) \({\sin ^2}({180^0} - \alpha ) + ta{n^2}({180^0} - \alpha ){\tan ^2}({270^0} - \alpha ) + \sin ({90^0} + \alpha )cos(\alpha  - {360^0})\)

= \({\sin ^2}\alpha  + {\tan ^2}\alpha {\cot ^2}\alpha  + {\cos ^2}\alpha  = 2\)

b) \({{\cos (\alpha  - {{90}^0})} \over {\sin ({{180}^0} - \alpha )}} + {{\tan (\alpha  - {{180}^0})c{\rm{os(18}}{{\rm{0}}^0} + \alpha )\sin ({{270}^0} + \alpha )} \over {\tan ({{270}^0} + \alpha )}}\)

Advertisements (Quảng cáo)

= \({{\sin \alpha } \over {\cos \alpha }} + {{\tan \alpha ( - \cos \alpha )( - \cos \alpha )} \over { - \cot \alpha }} = 1 - {\sin ^2}\alpha  = {\cos ^2}\alpha \)

c) \({{\cos ( - {{288}^0})cot{{72}^0}} \over {tan( - {{162}^0})\sin {{108}^0}}} + \tan {18^0}\)

\( = {{\cos ({{72}^0} - {{360}^0})\cot {{72}^0}} \over {\tan ({{18}^0} - {{180}^0})\sin ({{180}^0} - {{72}^0})}} - \tan {18^0}\)

= \({{{\rm{cos7}}{{\rm{2}}^0}\cot {{72}^0}} \over {\tan {{18}^0}\sin {{72}^0}}} - \tan {18^0}\)

= \({{{{\cot }^2}{{72}^0}} \over {\tan {{18}^0}}} - \tan {18^0} = {{{{\tan }^2}{{18}^0}} \over {\tan {{18}^0}}} - \tan {18^0} = 0\)

d) Ta có: \(\sin {70^0} = \cos {20^0},\sin {50^0} = cos4{{\rm{0}}^0};\sin {40^0} = cos{50^0}\). Vì vậy

\({{\sin {{20}^0}\sin {\rm{3}}{{\rm{0}}^0}\sin {{40}^0}\sin {{50}^0}\sin {{60}^0}\sin {{70}^0}} \over {cos{{10}^0}{\rm{cos5}}{{\rm{0}}^0}}}\)

= \(\eqalign{
& {{{1 \over 2}.{{\sqrt 3 } \over 2}.\sin {{20}^0}\cos {\rm{2}}{{\rm{0}}^0}\cos {{50}^0}\cos {{40}^0}} \over {cos{{10}^0}{\rm{cos5}}{{\rm{0}}^0}}} \cr
& = {{{1 \over 2}.{{\sqrt 3 } \over 4}\sin {{40}^0}.cos{{40}^0}} \over {{\rm{cos1}}{{\rm{0}}^0}}} \cr} \)

= \({{{{\sqrt 3 } \over {16}}\sin {{80}^0}} \over {cos{{10}^0}}} = {{\sqrt 3 } \over {16}}\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)