Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Bài 6 trang 80 Toán 10 tập 2 – Cánh diều: Để...

Bài 6 trang 80 Toán 10 tập 2 – Cánh diều: Để tham gia một phòng tập thể dục, người tập phải trả một khoản phí tham gia ban đầu...

Giải bài 6 trang 80 SGK Toán 10 tập 2 – Cánh diều - Bài 3. Phương trình đường thẳng

Question - Câu hỏi/Đề bài

Để tham gia một phòng tập thể dục, người tập phải trả một khoản phí tham gia ban đầu và phí sử dụng phòng tập. Đường thẳng \(\Delta \) ở Hình 38 biểu thị tổng chi phí (đơn vị: triệu đồng) để tham gia một phòng tập thể dục theo thời gian tập của một người (đơn vị: tháng).

a) Viết phương trình của đường thẳng \(\Delta \).

b) Giao điểm của đường thẳng \(\Delta \) với trục tung trong tình huống này có ý nghĩa gì?

c) Tính tổng chi phí mà người đó phải trả khi tham gia phòng tập thể dục với thời gian 12 tháng.

a) Phương trình đường thằng d đi qua hai điểm \(A\left( {{x_o};{y_o}} \right);B\left( {{x_1};{y_1}} \right)\) là: \(\frac{{x - {x_o}}}{{{x_1} - {x_o}}} = \frac{{y - {y_o}}}{{{y_1} - {y_o}}}\)

c) Thay giá trị tương ứng vào vào phương trình đường thẳng

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Đường thẳng \(\Delta \) đi qua hai điểm lần lượt có tọa độ \(\left( {0;1,5} \right),\left( {7;5} \right)\) nên \(\Delta \) có phương trình là:

\(\frac{{x - 0}}{{7 - 0}} = \frac{{y - 1,5}}{{5 - 1,5}} \Leftrightarrow \frac{x}{7} = \frac{{y - 1,5}}{{3,5}} \Leftrightarrow x - 2y + 3 = 0\)

b) Giao điểm của đường thẳng \(\Delta \) với trục \(Oy\) ứng với \(x = 0\). Thời điểm \(x = 0\)cho biết khoản phí tham gia ban đầu mà người tập phải trả. Khi \(x = 0\) thì \(y = 1,5\) , vì vậy khoản phí tham gia ban đầu mà người tập phải trả là 1 500 000 đồng.

c)  12 tháng đầu tiên ứng với \(x = 12\)

 Từ phương trình đường thẳng \(\Delta \) ta có: \(x - 2y + 3 = 0 \Leftrightarrow y = \frac{1}{2}x + \frac{3}{2}\)

 Thay \(x = 12\) vào phương trình đường thẳng ta có: \(y = \frac{1}{2}.12 + \frac{3}{2} = 7.5\)

 Vậy tổng chi phí mà người đó phải trả khi tham gia  phòng tập thể dục trong 12 tháng là 7tr5 nghìn đồng.

Advertisements (Quảng cáo)