Bài 26. Chứng minh rằng nếu \(G\) và \(G’\) lần lượt là trọng tâm tam giác \(ABC\) và tam giác \(A’B’C’\) thì
\(3\overrightarrow {G{G’}} = \overrightarrow {A{A’}} + \overrightarrow {B{B’}} + \overrightarrow {C{C’}} .\)
Từ đó hãy suy ra điều kiện cần và đủ để hai tam giác \(ABC\) và \(A’B’C’\) có trọng tâm trùng nhau.
Vì \(G\) là trọng tâm tam giác \(ABC\) nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
Vì \(G’\) là trọng tâm tam giác \(A’B’C’\) nên
Advertisements (Quảng cáo)
\(\overrightarrow {{G’}A’} + \overrightarrow {{G’}B’} + \overrightarrow {{G’}C’} = \overrightarrow 0 \)
Áp dụng quy tắc ba điểm, ta có
\(\eqalign{
& \overrightarrow {A{A’}} + \overrightarrow {B{B’}} + \overrightarrow {C{C’}} = \left( {\overrightarrow {AG} + \overrightarrow {G{G’}} + \overrightarrow {{G’}{A’}} } \right) + \left( {\overrightarrow {BG} + \overrightarrow {G{G’}} + \overrightarrow {{G’}{B’}} } \right) + \left( {\overrightarrow {CG} + \overrightarrow {G{G’}} + \overrightarrow {{G’}{C’}} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3\overrightarrow {G{G’}} + \left( {\overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} } \right) + \left( {\overrightarrow {{G’}{A’}} + \overrightarrow {{G’}{B’}} + \overrightarrow {{G’}{C’}} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3\overrightarrow {G{G’}} . \cr} \)
Vậy điều kiện cần và đủ để hai tam giác \(ABC\) và \(A’B’C’\) có trọng tâm trùng nhau là
\(\overrightarrow {A{A’}} + \overrightarrow {B{B’}} + \overrightarrow {C{C’}} = \overrightarrow 0 \)