Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 22 trang 23 Sách giáo khoa (SGK) Hình học 10 Nâng...

Bài 22 trang 23 Sách giáo khoa (SGK) Hình học 10 Nâng cao, Cho tam giác OAB. Gọi M, N lần lượt là trung điểm hai cạnh OA và OB. Hãy tìm các số m thích hợp trong mỗi đẳng thức sau đây...

Cho tam giác OAB. Gọi M, N lần lượt là trung điểm hai cạnh OA và OB. Hãy tìm các số m thích hợp trong mỗi đẳng thức sau đây. Bài 22 trang 23 Sách giáo khoa (SGK) Hình học 10 Nâng cao - Bài 4. Tích của một vectơ với một số

Bài 22. Cho tam giác \(OAB\). Gọi \(M, N\) lần lượt là trung điểm hai cạnh \(OA\) và \(OB\). Hãy tìm các số \(m\) và \(n\) thích hợp trong mỗi đẳng thức sau đây

\(\eqalign{
& \overrightarrow {OM} = m\overrightarrow {OA} + n\overrightarrow {OB} ;\,\,\,\,\,\,\overrightarrow {MN} = m\overrightarrow {OA} + n\overrightarrow {OB} ; \cr
& \overrightarrow {AN} = m\overrightarrow {OA} + n\overrightarrow {OB} ;\,\,\,\,\,\,\,\,\overrightarrow {MB} = m\overrightarrow {OA} + n\overrightarrow {OB} . \cr} \)

Advertisements (Quảng cáo)

Ta có

\(\eqalign{
& \overrightarrow {OM} = {1 \over 2}\overrightarrow {OA} = {1 \over 2}\overrightarrow {OA} + 0.\overrightarrow {OB} \,\,\,\,\, \Rightarrow \,m = {1 \over 2},\,n = 0. \cr
& \overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} = {1 \over 2}\overrightarrow {OB} - {1 \over 2}\overrightarrow {OA} = \left( { - {1 \over 2}} \right)\overrightarrow {OA} + {1 \over 2}\overrightarrow {OB} \,\,\,\,\, \Rightarrow \,m = - {1 \over 2},\,n = {1 \over 2}. \cr
& \overrightarrow {AN} = \overrightarrow {ON} - \overrightarrow {OA} = {1 \over 2}\overrightarrow {OB} - \overrightarrow {OA} = \left( { - 1} \right)\overrightarrow {OA} + {1 \over 2}\overrightarrow {OB} \,\,\,\, \Rightarrow \,m = - 1,\,n = {1 \over 2}. \cr
& \overrightarrow {MB} = \overrightarrow {OB} - \overrightarrow {OM} = \overrightarrow {OB} - {1 \over 2}\overrightarrow {OA} = \left( { - {1 \over 2}} \right)\overrightarrow {OA} + \overrightarrow {OB} \,\,\,\, \Rightarrow \,m = - {1 \over 2},\,n = 1. \cr} \)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)