Trang chủ Lớp 10 Toán lớp 10 Nâng cao Bài 48 trang 135 SGK Đại số 10 nâng cao, Bài toán...

Bài 48 trang 135 SGK Đại số 10 nâng cao, Bài toán vitamin....

Bài toán vitamin.. Bài 48 trang 135 SGK Đại số 10 nâng cao – Bài 5: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bài toán vitamin.

Một nhà khoa học nghiên cứ về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. kết quả như sau:

i) Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B.

ii) Một người mỗi ngày cần từ 400 đến 1000 đơn vị vitamin cả A lẫn B.

iii) Do tác động phối hợp của hai loại vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A.

Giả sử x và y lần lượt là số đơn vị vitamin A và B mà bạn dùng mỗi ngày

a) Gọi c là số tiền vitamin mà bạn phải trả (tính bằng đồng). hãy viết phương trình biểu diễn C dưới dạng một biểu thức của x và y, nếu giá một đơn vị vitamin A là 9 đồng và giá một đơn vị vitamin B là 7,5 đồng.

b) Viết các phương trình biểu thị i), ii) và iii) , lập thành một hệ bất phương trình rồi biểu diễn miền nghiệm của một hệ bất phương trình đó.

Quảng cáo

c) Cũng trên mặt phẳng tọa độ ấy, hãy vẽ đường biểu diễn số tiền phải trả c, nếu c =9000, c = 4500; c = 2250

Hãy dùng bút màu để phân biệt các đường đó

d) Tìm phương tán dùng hai loại virtamin A và B thỏa mãn các điều kiện trên để số tiền phải trả là ít nhất.

a) \(c = 9x + 7,5y\)

b) Hệ phương trình nhận được là:

\(\left\{ \matrix{
0 \le x \le 600 \hfill \cr
0 \le y \le 500 \hfill \cr
400 \le x + y \le 1000 \hfill \cr
{1 \over 2}x \le y \le 3x \hfill \cr} \right.\) 

Miền nghiệm trên là miền đa giác MNPQRS (kể cả biên trên hình)

 

c) Số tiền đạt giá trị nhỏ nhất tại \(M(100, 300)\) nên phương án tốt nhất là dùng 100 đơn vị vitamin A và 300 đơn vị vitamin B mỗi ngày.

Chi phí mỗi ngày là 3150 đồng.

Quảng cáo