Trang chủ Lớp 10 Toán lớp 10 (sách cũ) Bài 4 trang 62 sgk đại số 10: Bài 2. Phương trình...

Bài 4 trang 62 sgk đại số 10: Bài 2. Phương trình quy về phương trình bậc nhất bậc hai...

Bài 4 trang 62 sgk đại số 10: Bài 2. Phương trình quy về phương trình bậc nhất bậc hai. Giải các phương trình

Bài 4. Giải các phương trình

a) \(2{x^4}-{\rm{ }}7{x^2} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\);

b) \(3{x^{4}} + {\rm{ }}2{x^{2}}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\).

Giải

a) Đặt \(x^2= t  ≥  0\) ta được:

\(\eqalign{
& 2{t^2} - 7t + 5 = 0 \cr
& \Leftrightarrow \left[ \matrix{
{t_1} = 1\text{ (thỏa mãn )} \hfill \cr
{t_2} = {5 \over 2} \text{ (thỏa mãn )} \hfill \cr} \right. \cr} \)

+) Với \({t_1}=1\) ta được \({x_{1,2}} =  \pm 1\)

Advertisements (Quảng cáo)

+) Với \({t_2} =  {5 \over 2}\) ta được \({x_{3,4}} =  \pm {{\sqrt {10} } \over 2}\).

Vậy phương trình đã cho có \(4\) nghiệm.

b) Đặt \(x^2= t  ≥  0\) ta được

\(\eqalign{
& 3{t^2} + 2t - 1 = 0 \cr
& \Leftrightarrow \left[ \matrix{
{t_1} = - 1 \text{ (loại )}\hfill \cr
{t_2} = {1 \over 3} \text{ (thỏa mãn )} \hfill \cr} \right. \cr} \)

+) Với \({t_2} = {1 \over 3} \) ta được \({x_{1,2}} =  \pm {{\sqrt 3 } \over 3}\)

Vậy phương trình đã cho có hai nghiệm.

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)