Trang chủ Lớp 10 Toán lớp 10 (sách cũ) Bài 9 trang 12 sgk hình học lớp 10: Bài 2. Tổng...

Bài 9 trang 12 sgk hình học lớp 10: Bài 2. Tổng và hiệu của hai vectơ...

Bài 9 trang 12 sgk hình học lớp 10: Bài 2. Tổng và hiệu của hai vectơ. Bài 9. Chứng minh rằng

Bài 9. Chứng minh rằng \(\overrightarrow{AB}= \overrightarrow{CD}\) khi và chỉ khi trung điểm của hai đoạn thẳng \(AD\)  và \(BC\) trùng nhau.

Ta chứng minh hai mệnh đề.

a) Cho  \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\) thì \(AD\) và \(BC\) có trung điểm trùng nhau. Gọi \(I\) là trung điểm của \(AD\) ta chứng minh \(I\) cũng là trung điểm của \(BC\).

Theo quy tắc của ba điểm của tổng, ta có 

     \(\overrightarrow{AB}= \overrightarrow{AI} + \overrightarrow{IB}\);

      \(\overrightarrow{CD}= \overrightarrow{CI}+ \overrightarrow{ID}\)

Vì \(\overrightarrow{AB} = \overrightarrow{CD}\) nên \(\overrightarrow{AI} + \overrightarrow{IB}=  \overrightarrow{CI}+ \overrightarrow{ID}\)

                           \(\Rightarrow \overrightarrow{AI} - \overrightarrow{ID} = \overrightarrow{CI} - \overrightarrow{IB}\)

Advertisements (Quảng cáo)

                           \(\Rightarrow\overrightarrow{AI} + \overrightarrow{DI} = \overrightarrow{CI} + \overrightarrow{BI}\)              (1)

Vì \(I\) là trung điểm của \(AD\) nên  \(\overrightarrow{AI} + \overrightarrow{DI} = \overrightarrow{0}\)         (2)

Từ (1) và (2) suy ra \(\overrightarrow{CI} + \overrightarrow{BI} = \overrightarrow{0}\)                             (3)

Đẳng thức (3) chứng tỏ \(I\) là trung điểm của \(BC\).

b) \(AD\) và \(BC\)  có chung trung điểm \(I\), ta chứng minh \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\).

\(I\) là trung điểm của \(AD\) \(\Rightarrow \overrightarrow{AI} + \overrightarrow{DI} = \overrightarrow{0}\)   \(\Rightarrow\overrightarrow{AI} - \overrightarrow{ID} =\overrightarrow{0}\)

\(I\) là trung điểm của \(BC\)  \(\Rightarrow \overrightarrow{CI} + \overrightarrow{BI}= \overrightarrow{0}\)    \(\Rightarrow \overrightarrow{CI} - \overrightarrow{IB}= \overrightarrow{0}\)

Suy ra  \(\overrightarrow{AI} - \overrightarrow{ID}=  \overrightarrow{CI}- \overrightarrow{IB}\) 

     \(\Rightarrow \overrightarrow{AI} + \overrightarrow{IB} = \overrightarrow{CI}+ \overrightarrow{ID}\)    \(\Rightarrow \overrightarrow{AB}= \overrightarrow{CD}\) (đpcm)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)