Trang chủ Lớp 10 Toán lớp 10 (sách cũ) Câu 12 trang 107 SGK Đại số 10: Ôn tập chương IV...

Câu 12 trang 107 SGK Đại số 10: Ôn tập chương IV - Bất đẳng thức. Bất phương trình....

Câu 12 trang 107 SGK Đại số 10: Ôn tập chương IV - Bất đẳng thức. Bất phương trình.. Cho a, b, c là độ dài ba cạnh của một tam giác. Sử dụng định lí về dấu của tam thức bậc hai , chứng minh rằng:

Bài 12. Cho \(a, b, c\) là độ dài ba cạnh của một tam giác. Sử dụng định lí về dấu của tam thức bậc hai , chứng minh rằng: \({b^2}{x^{2}}-{\rm{ }}({b^2} + {c^2}-{\rm{ }}{a^2})x{\rm{ }} + {c^2} > 0,{\rm{ }}\forall x\)

Biệt thức của tam thức vế  trái:

\({\Delta {\rm{ }} = {\rm{ }}{{\left( {{b^2} + {c^2}-{\rm{ }}{a^2}} \right)}^2}-{\rm{ }}4{b^2}{c^2}}\)

\({ = {\rm{ }}\left( {{b^2} + {c^2}-{\rm{ }}{a^{2}} + {\rm{ }}2bc} \right){\rm{ }}\left( {{b^2} + {c^2}-{\rm{ }}{a^2} - 2bc} \right)}\)

\({ = {\rm{ }}\left[ {{{\left( {b + c} \right)}^2}-{\rm{ }}{a^2}} \right]\left[ {{{\left( {b - c} \right)}^2}-{\rm{ }}{a^2}} \right]}\)

Advertisements (Quảng cáo)

\({ = {\rm{ }}\left( {b + a + c} \right)\left( {b + c{\rm{ }}-{\rm{ }}a} \right)\left( {b{\rm{ }}-{\rm{ }}c + a} \right)\left( {b{\rm{ }}-{\rm{ }}c{\rm{ }}-{\rm{ }}a} \right){\rm{ }} < 0}\)

(vì trong một tam giác tổng của hai cạnh lớn hơn cạnh thứ ba \(b+a+c>0; b+c – a>0; b – c+a>0; b – c – a<0\))

Do đó tam giác cùng dấu với \(b^2>0, ∀x\).

Nghĩa là: \({b^2}{x^{2}}-{\rm{ }}({b^2} + {c^2}-{\rm{ }}{a^2})x{\rm{ }} + {c^2} > 0,{\rm{ }}\forall x\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)