Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 25 trang 76 SBT Toán 11 – Cánh diều: Sau khi...

Bài 25 trang 76 SBT Toán 11 - Cánh diều: Sau khi phát hiện một bệnh dịch...

Thay hàm \(g\left( t \right) = 45{t^2} - {t^3}\) và giá trị \(g\left( {10} \right)\) vào biểu thức \(\frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) và dùng các. Hướng dẫn trả lời - Bài 25 trang 76 sách bài tập toán 11 - Cánh diều - Bài 2. Giới hạn của hàm số. Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày)...

Question - Câu hỏi/Đề bài

Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là \(g\left( t \right) = 45{t^2} - {t^3}\) (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm \({t_1}\), \({t_2}\) là \({V_{tb}} = \frac{{g\left( {{t_2}} \right) - g\left( {{t_1}} \right)}}{{{t_2} - {t_1}}}\). Tính \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) và cho biết ý nghĩa kết quả tìm được.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Thay hàm \(g\left( t \right) = 45{t^2} - {t^3}\) và giá trị \(g\left( {10} \right)\) vào biểu thức \(\frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) và dùng các định lý về giới hạn hàm số để tính \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\).

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Ta có \(g\left( {10} \right) = {45.10^2} - {10^3}\). Như vậy

\(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}} = \mathop {\lim }\limits_{t \to 10} \frac{{45{t^2} - {t^3} - \left( {{{45.10}^2} - {{10}^3}} \right)}}{{t - 10}} = \mathop {\lim }\limits_{t \to 10} \frac{{45\left( {{t^2} - {{10}^2}} \right) - \left( {{t^3} - {{10}^3}} \right)}}{{t - 10}}\)

\( = \mathop {\lim }\limits_{t \to 10} \frac{{45\left( {t - 10} \right)\left( {t + 10} \right) - \left( {t - 10} \right)\left( {{t^2} + 10t + {{10}^2}} \right)}}{{t - 10}}\)

\( = \mathop {\lim }\limits_{t \to 10} \left[ {45\left( {t + 10} \right) - \left( {{t^2} + 10t + {{10}^2}} \right)} \right] = 45\left( {10 + 10} \right) - \left( {{{10}^2} + {{10}^2} + {{10}^2}} \right) = 600\)

Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm \(t = 10\) (ngày) là 600 người/ngày.

Advertisements (Quảng cáo)