Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 49 trang 117 SBT Toán 11 – Cánh diều: Hình biểu...

Bài 49 trang 117 SBT Toán 11 - Cánh diều: Hình biểu diễn của hai đường thẳng chéo nhau có thể là hai đường thẳng song song được không? Vì sao?...

Giả sử hai đường thẳng \(a\) và \(b\) chéo nhau và hình chiếu song song của \(a\). Phân tích và giải - Bài 49 trang 117 sách bài tập toán 11 - Cánh diều - Bài 6. Phép chiếu song song. Hình biểu diễn của một hình không gian. Hình biểu diễn của hai đường thẳng chéo nhau có thể là hai đường thẳng song song được không? Vì sao?...

Question - Câu hỏi/Đề bài

Hình biểu diễn của hai đường thẳng chéo nhau có thể là hai đường thẳng song song được không? Vì sao?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Giả sử hai đường thẳng \(a\) và \(b\) chéo nhau và hình chiếu song song của \(a\), \(b\) theo phương chiếu là đường thẳng bất kỳ \(l\) lần lượt là \(a’\), \(b’\) trên cùng một mặt phẳng. Ta cần xác định xem \(a’\) và \(b’\) có song song với nhau không.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Giả sử hai đường thẳng \(a\) và \(b\) chéo nhau và hình chiếu song song của \(a\), \(b\) theo phương chiếu là đường thẳng bất kỳ \(l\) lần lượt là \(a’\), \(b’\) trên cùng một mặt phẳng. Ta nhận thấy rằng nếu mặt phẳng chứa hai đường thẳng \(a\) và \(a’\) (kí hiệu là \(\left( {a,a’} \right)\)) song song với mặt phẳng \(\left( {b,b’} \right)\) thì do \(a’\) và \(b’\) cùng nằm trên mặt phẳng chiếu, nên chúng song song với nhau.

Như vậy, hình biểu diễn của hai đường thẳng chéo nhau có thể là hai đường thẳng song song

Advertisements (Quảng cáo)