Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 4 trang 55 SBT Toán 11 – Chân trời sáng tạo...

Bài 4 trang 55 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình chóp S. ABCD có đáy là hình thoi, O là giao điểm của hai đường chéo, \(SA = SC...

a, c) Sử dụng kiến thức về định lí đường thẳng vuông góc với mặt phẳng để chứng minh. Gợi ý giải - Bài 4 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài 2. Đường thẳng vuông góc với mặt phẳng. Cho hình chóp S. ABCD có đáy là hình thoi, O là giao điểm của hai đường chéo, \(SA = SC, SB = SD\)...

Question - Câu hỏi/Đề bài

Cho hình chóp S.ABCD có đáy là hình thoi, O là giao điểm của hai đường chéo, \(SA = SC,SB = SD\).

a) Chứng minh rằng \(SO \bot \left( {ABCD} \right)\).

b) Gọi I, J lần lượt là trung điểm của BA, BC. Chứng minh rằng \(IJ \bot \left( {SBD} \right)\).

c) Chứng minh rằng \(BD \bot \left( {SAC} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a, c) Sử dụng kiến thức về định lý đường thẳng vuông góc với mặt phẳng để chứng minh: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).

b) Sử dụng kiến thức về liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng: Cho hai đường thẳng song song. Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Vì ABCD là hình thoi tâm O nên O là trung điểm của AC, O là trung điểm của BD.

Vì \(SA = SC\) nên tam giác SAC cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác SAC. Do đó, \(SO \bot AC\)

Vì \(SB = SD\) nên tam giác SBD cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác SBD. Do đó, \(SO \bot BD\)

Vì \(SO \bot AC\), \(SO \bot BD\), AC và BD cắt nhau và nằm trong (ABCD).

Do đó, \(SO \bot \left( {ABCD} \right)\)

b) Vì \(SO \bot AC,BD \bot AC\) (do ABCD là hình thoi tâm), SO và BD cắt nhau tại O và nằm trong (SBD) nên \(AC \bot \left( {SBD} \right)\) (1)

Vì I, J lần lượt là trung điểm của BA, BC nên IJ là đường trung bình của tam giác BAC. Do đó, IJ//AC (2)

Từ (1) và (2) suy ra: \(IJ \bot \left( {SBD} \right)\).

c) Vì \(SO \bot BD,BD \bot AC\), SO và AC cắt nhau tại O và nằm trong (SAC) nên \(BD \bot \left( {SAC} \right)\).

Advertisements (Quảng cáo)