Áp dụng công thức: Trên đường tròn có bán kính \(R\), cung có số đo \(\alpha \) rad có độ dài \(l = \alpha R\). Gợi ý giải - Bài 1.3 trang 7 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài 1. Giá trị lượng giác của góc lượng giác. Một đường tròn có bán kính 20m. Tìm độ dài của cung trên đường tròn đó có số đo là...
Một đường tròn có bán kính 20m. Tìm độ dài của cung trên đường tròn đó có số đo là
a) \(\frac{{2\pi }}{7}\);
b) \({36^0}\).
Áp dụng công thức: Trên đường tròn có bán kính \(R\), cung có số đo \(\alpha \) rad có độ dài \(l = \alpha R\).
Advertisements (Quảng cáo)
Đối với cung có số đo độ, ta đổi độ sang radian bằng công thức \({a^0} = a.\frac{\pi }{{180}}\)(rad).
a) Độ dài của cung \(\frac{{2\pi }}{7}\) là \(l = \alpha .R = \frac{{2\pi }}{7}.20 = \frac{{40\pi }}{7}\,(m)\).
b) \({36^0} = 36.\frac{\pi }{{180}} = \frac{\pi }{5}\)
Độ dài của cung \({36^0}\) là \(l = \alpha .R = \frac{\pi }{5}.20 = 4\pi \,(m)\).