Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 29 trang 70 SBT Toán 11 – Kết nối tri thức:...

Bài 29 trang 70 SBT Toán 11 - Kết nối tri thức: Giả sử \({u_n}\) là số hạng thứ \(n\) của dãy số \(\left( {{u_n}} \right)\) và \({u_n} = \frac{{{{\left( {1...

Ta có \({u_1} = 1, {u_2} = 1\) và \({u_{n + 2}} = \frac{{{{\left( {1 + \sqrt 5 } \right)}^{n + 2}} - {{\left( {1 - \sqrt 5 }. Phân tích và lời giải - Bài 29 trang 70 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài tập ôn tập cuối năm. Giả sử \({u_n}\) là số hạng thứ \(n\) của dãy số \(\left( {{u_n}} \right)\) và \({u_n} = \frac{{{{\left( {1 + \sqrt 5 } \right)}^n} - {{\left( {1 - \sqrt 5 } \right)}^n}}}{{{2^n}\sqrt 5 }}\)...

Question - Câu hỏi/Đề bài

Giả sử \({u_n}\) là số hạng thứ \(n\) của dãy số \(\left( {{u_n}} \right)\) và \({u_n} = \frac{{{{\left( {1 + \sqrt 5 } \right)}^n} - {{\left( {1 - \sqrt 5 } \right)}^n}}}{{{2^n}\sqrt 5 }}\).

a) Chứng tỏ rằng \({u_1} = 1,{u_2} = 1\) và \({u_{n + 2}} = {u_{n + 1}} + {u_n}\) với mọi \(n \in {\mathbb{N}^{\rm{*}}}\).

Từ đó suy ra \(\left( {{u_n}} \right)\) là dãy số Fibonacci.

b) Viết 11 số hạng đầu tiên của dãy Fibonacci và 10 tỉ số \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) đầu tiên.

Tinh \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_{n + 1}}}}{{{u_n}}}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Ta có \({u_1} = 1,{u_2} = 1\) và \({u_{n + 2}} = \frac{{{{\left( {1 + \sqrt 5 } \right)}^{n + 2}} - {{\left( {1 - \sqrt 5 } \right)}^{n + 2}}}}{{{2^{n + 2}}\sqrt 5 }}\)

Áp dụng hằng đẳng thức \({a^{n + 2}} - {b^{n + 2}} = \left( {{a^{n + 1}} - {b^{n + 1}}} \right)\left( {a + b} \right) - ab\left( {{a^n} - {b^n}} \right)\)

Ta có \({u_{n + 2}} = \frac{{{{\left( {1 + \sqrt 5 } \right)}^{n + 2}} - {{\left( {1 - \sqrt 5 } \right)}^{n + 2}}}}{{{2^{n + 2}}\sqrt 5 }}\)

\( = \frac{{\left[ {{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}} \right]\left[ {1 + \sqrt 5 + 1 - \sqrt 5 } \right] - \left( {1 + \sqrt 5 } \right)\left( {1 - \sqrt 5 } \right)\left[ {{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}} \right]}}{{{2^{n + 2}}\sqrt 5 }}\)

\( = \frac{{\left[ {{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}} \right] \cdot 2 + 4 \cdot \left[ {{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}} \right]}}{{{2^{n + 2}}\sqrt 5 }}\)

\( = \frac{{{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}}}{{{2^{n + 1}}\sqrt 5 }} + \frac{{{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}}}{{{2^n}\sqrt 5 }} = {u_{n + 1}} + {u_n}\).

Vậy \(\left( {{u_n}} \right)\) là dãy số Fibonacci.

b) Lập bảng

\(n\)

1

2

3

4

5

6

7

8

9

10

11

\({u_n}\)

\(\frac{{{u_{n + 1}}}}{{{u_n}}}\)

Advertisements (Quảng cáo)

Thay

Tính \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_{n + 1}}}}{{{u_n}}}\)

Answer - Lời giải/Đáp án

. a) Ta có \({u_1} = 1,{u_2} = 1\) và \({u_{n + 2}} = \frac{{{{(1 + \sqrt 5 )}^{n + 2}} - {{(1 - \sqrt 5 )}^{n + 2}}}}{{{2^{n + 2}}\sqrt 5 }}\)

\( = \frac{{\left[ {{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}} \right]\left[ {1 + \sqrt 5 + 1 - \sqrt 5 } \right] - \left( {1 + \sqrt 5 } \right)\left( {1 - \sqrt 5 } \right)\left[ {{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}} \right]}}{{{2^{n + 2}}\sqrt 5 }}\)

\( = \frac{{\left[ {{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}} \right] \cdot 2 + 4 \cdot \left[ {{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}} \right]}}{{{2^{n + 2}}\sqrt 5 }}\)

\( = \frac{{{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}}}{{{2^{n + 1}}\sqrt 5 }} + \frac{{{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}}}{{{2^n}\sqrt 5 }} = {u_{n + 1}} + {u_n}\).

Vậy \(\left( {{u_n}} \right)\) là dãy số Fibonacci.

b)

\(n\)

1

2

3

4

5

6

7

8

9

10

11

\({u_n}\)

1

1

2

3

5

8

13

21

34

55

89

\(\frac{{{u_{n + 1}}}}{{{u_n}}}\)

1

2

1,5

\(\frac{5}{3}\)

\(\frac{8}{5}\)

\(\frac{{13}}{8}\)

\(\frac{{21}}{{13}}\)

\(\frac{{34}}{{21}}\)

\(\frac{{55}}{{34}}\)

\(\frac{{89}}{{55}}\)

\(\frac{{144}}{{89}}\)

Ta có:

(do \(\left| {\frac{{1 - \sqrt 5 }}{{1 + \sqrt 5 }}} \right|