Áp dụng quy tắc tính đạo hàm. Hướng dẫn giải - Bài 9.45 trang 66 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài tập cuối chương IX. Cho \(f\left( x \right) = {x^3} + a{x^2} + 3x + 1\) (\(a \in \mathbb{R}\) là tham số)...
Cho \(f\left( x \right) = {x^3} + a{x^2} + 3x + 1\) (\(a \in \mathbb{R}\) là tham số) . Tìm \(a\) để \(f’\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\).
Áp dụng quy tắc tính đạo hàm
Advertisements (Quảng cáo)
Ta có \(f’\left( x \right) = 3{x^2} + 2ax + 3\). Do đó, \(f’\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi
\(3{x^2} + 2ax + 3 > 0,\forall x \Leftrightarrow \Delta ‘ = {a^2} - 9