a) \({x^5} - 5x - 1 = 0\) có ít nhất ba nghiệm ;
b) \(m{\left( {x - 1} \right)^3}\left( {{x^2} - 4} \right) + {x^4} - 3 = 0\) luôn có ít nhất hai nghiệm với mọi giá trị của tham số m ;
c) \({x^3} - 3x = m\) có ít nhất hai nghiệm với mọi giá trị của $m \in \left( { - 2;2} \right)\)
Giải :
Advertisements (Quảng cáo)
Hướng dẫn :
a) Xét hàm số \(f\left( x \right) = {x^5} - 5x - 1\) trên các đoạn \(\left[ { - 2; - 1} \right],\left[ { - 1;0} \right],\left[ {0;3} \right]\)
b) Xét hàm số \(f\left( x \right) = m{\left( {x - 1} \right)^3}\left( {{x^2} - 4} \right) + {x^4} - 3\) trên các đoạn \(\left[ { - 2;1} \right],\left[ {1;2} \right]\)
c) Xét hàm số \(f\left( x \right) = {x^3} - 3x - m\) trên các đoạn \(\left[ { - 1;1} \right],\left[ {1;2} \right]\)