Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 14 trang 172 Sách bài tập (SBT) Đại số và giải...

Bài 14 trang 172 Sách bài tập (SBT) Đại số và giải tích 11: Phương trình f(x) = 0 có nghiệm hay...

Phương trình f(x) = 0 có nghiệm hay không?. Bài 14 trang 172 Sách bài tập (SBT) Đại số và giải tích 11 - Ôn tập chương IV - Giới hạn

Cho hàm số \(f\left( x \right) = {{{x^3} + 8x + 1} \over {x - 2}}\). Phương trình \(f\left( x \right) = 0\) có nghiệm hay không

a)      trong khoảng (1; 3) ?

b)      trong khoảng (-3; 1) ?

a)      Với \(x \ne 2\) ta có \({{{x^3} + 8x + 1} \over {x - 2}} = 0 \Leftrightarrow {x^3} + 8x + 1 = 0\)

Advertisements (Quảng cáo)

Vì \({x^3} + 8x + 1 > 0\) với mọi \(x \in \left( {1;3} \right)\) nên phương trình \({x^3} + 8x + 1 = 0\) không có nghiệm trong khoảng này.

b)     \(f\left( x \right)\) là hàm phân thức hữu tỉ, nên liên tục trên \(\left( { - \infty ;2} \right)\). Do đó, nó liên tục trên [-3; 1]

Mặt khác, \(f\left( { - 3} \right)f\left( 1 \right) =  - 100 < 0\)

Do đó, phương trình \(f\left( x \right) = 0\) có nghiệm trong khoảng (- 3; 1)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)