Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 2.13 trang 71 SBT Hình học 11: Chứng minh rằng tứ...

Bài 2.13 trang 71 SBT Hình học 11: Chứng minh rằng tứ giác MNPQ là hình bình hành. Từ đó suy ra ba đoạn...

Chứng minh rằng tứ giác MNPQ là hình bình hành. Từ đó suy ra ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.. Bài 2.13 trang 71 Sách bài tập (SBT) Hình học 11 - Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song

Cho tứ diện ABCD. Gọi M, N, P, Q, R và S lần lượt trung điểm của AB, CD, BC, AD, AC và BD. Chứng minh rằng tứ giác MNPQ là hình bình hành. Từ đó suy ra ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.

(h.2.31)

Trong tam giác ABC ta có:

\(MP\parallel AC\) và \(MP = {{AC} \over 2}\).

Trong tam giác ACD ta có:

Advertisements (Quảng cáo)

\(QN\parallel AC\) và \(QN = {{AC} \over 2}\).

Từ đó suy ra \(\left\{ \matrix{MP\parallel QN \hfill \crMP = QN \hfill \cr} \right.\)

⟹ Tứ giác MNPQ là hình bình hành.

Do vậy hai đường chéo MN và PQ cắt nhau tại trung điểm O của mỗi đường.

Tương tự: \(P{\rm{R}}\parallel Q{\rm{S}}\) và \(P{\rm{R}} = QS = {{AB} \over 2}\). Do đó tứ giác PQRS là hình bình hành.

Suy ra hai đường chéo RS và PQ cắt nhau tại trung điểm O của PQ và OR = OS

Vậy ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)