Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 2.17 trang 67 Sách bài tập Đại số và giải tích...

Bài 2.17 trang 67 Sách bài tập Đại số và giải tích 11:Một lớp có 50 học sinh. Tính số cách phân công 4 bạn...

a) Một lớp có 50 học sinh. Tính số cách phân công 4 bạn quét sân trường và 5 bạn xén cây bằng hai phương pháp để rút ra đẳng thức . Bài 2.17 trang 67 Sách bài tập (SBT) Đại số và giải tích 11 - Bài 2. Hoán vị - Chỉnh hợp - Tổ hợp

a)      Một lớp có 50 học sinh. Tính số cách phân công 4 bạn quét sân trường và 5 bạn xén cây bằng hai phương pháp để rút ra đẳng thức

$$C_{50}^9.C_9^4 = C_{50}^4.C_{46}^5$$

b)      Chứng minh công thức Niu-tơn 

$$C_n^r.C_r^k = C_n^k.C_{n - k}^{r - k}.{\rm{   }}\left( {n \ge r \ge k \ge 0} \right)$$

c)      Tìm chữ số ở hàng đơn vị của tổng

$$S = 0! + 2! + 4! + 6! + ... + 100!$$

a)      Cách thứ nhất: Chọn 9 bạn nam trong 50 bạnđể làm trực nhật. Có \(C_{50}^9\) cách.

Advertisements (Quảng cáo)

Khi đã chọnđược 9 bạn rồi, chọn 4 trong 9 bạnđó để quét sân. Có \(C_9^4\) cách.

Từ đó, theo quy tắc nhân, có \(C_{50}^9.C_9^4\) cách phân công.

Cách thứ hai: Chọn 4 trong 50 bạn để quét sân, sau đó chọn 5 trong 46 bạn còn lại để xén cây. Vậy có \(C_{50}^4.C_{46}^5\) cách phân công.

Từ đó ta có đẳng thức cần chứng minh.

b)      Lập luận tương tự.

c)      Ta có: \)0! = 1;{\rm{ }}2! = 2;{\rm{ }}4! = 1.2.3.4 = 24\)

Các số hạng \(6!{\rm{ }};{\rm{ }}8!{\rm{ }};{\rm{ }}...{\rm{ ; 100!}}\) đều có tận cùnglà chữ số 0. Do đó chữ số ở  hàng đơn vị của S là 1 + 2 + 4 = 7

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)