Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 2.24 trang 80 SBT Hình học 11: Cho hai hình vuông...

Bài 2.24 trang 80 SBT Hình học 11: Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên...

Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN. Bài 2.24 trang 80 Sách bài tập (SBT) Hình học 11 - Bài 4. Hai mặt phẳng song song

Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M và N lần lượt cắt AD và AF tại M’ và N’. Chứng minh

a) \(\left( {A{\rm{D}}F} \right)\parallel \left( {BCE} \right)\).

b) \(M’N’\parallel DF\).

c) \(\left( {DEF} \right)\parallel \left( {MM’N’N} \right)\) và \(MN\parallel \left( {DEF} \right)\).

a)

\(\left\{ \matrix{
AD\parallel BC \hfill \cr
BC \subset \left( {BCE} \right) \hfill \cr} \right. \Rightarrow AD\parallel \left( {BCE} \right)\)

\(\left\{ \matrix{
AF\parallel BE \hfill \cr
BE \subset \left( {BCE} \right) \hfill \cr} \right. \Rightarrow AF\parallel \left( {BCE} \right)\)

Mà \(AD,AF \subset \left( {ADF} \right)\)

Advertisements (Quảng cáo)

Nên \(\left( {ADF} \right)\parallel \left( {BCE} \right)\)

b) Vì ABCD và ABEF  là các hình vuông nên AC = BF. Ta có:

\(MM’\parallel C{\rm{D}} \Rightarrow {{AM’} \over {A{\rm{D}}}} = {{AM} \over {AC}}\,\,\,\,\,\,\,\left( 1 \right)\) 

\(NN’\parallel AB \Rightarrow {{AN’} \over {AF}} = {{BN} \over {BF}}\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

So sánh (1) và (2) ta được \({{AM’} \over {A{\rm{D}}}} = {{AN’} \over {AF}} \Rightarrow M’N’\parallel DF\)

c) Từ chứng minh trên suy ra \(DF\parallel \left( {MM’N’N} \right)\)

\(\left. \matrix{
NN’\parallel AB \Rightarrow NN’\parallel EF \hfill \cr
NN’ \subset \left( {MM’N’N} \right) \hfill \cr} \right\} \Rightarrow EF\parallel \left( {MM’N’N} \right)\)

Mà \(DF,EF \subset \left( {DEF} \right)\) nên \(\left( {DEF} \right)\parallel \left( {MM’N’N} \right)\)

Vì \(MN \subset \left( {MM’N’N} \right)\) và \(\left( {MM’N’N} \right)\parallel \left( {DEF} \right)\) nên \(MN\parallel \left( {DEF} \right)\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)