Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 3.33 trang 162 Sách bài tập (SBT) Hình học 11: Cho...

Bài 3.33 trang 162 Sách bài tập (SBT) Hình học 11: Cho hình lập phương ABCD.A’B’C’D’ cạnh Chứng minh rằng khoảng...

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Chứng minh rằng khoảng cách từ các điểm A’, B, D; C, B’, D tới đường chéo AC’ bằng nhau. Tính khoảng cách đó.. Bài 3.33 trang 162 Sách bài tập (SBT) Hình học 11 - Bài 5. Khoảng cách

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Chứng minh rằng khoảng cách từ các điểm A’, B, D; C, B’, D tới đường chéo AC’ bằng nhau. Tính khoảng cách đó.

Điểm A cách đều ba đỉnh của tam giác đều A’BD vì ta có \(AB = A{\rm{D}} = AA’ = a\), điểm C’ cũng cách đều ba đỉnh của tam giác đều đó vì ta có: 

\(C’B = C’D = C’A’ = a\sqrt 2 \)

Vậy AC’ là trục của đường tròn ngoại tiếp tam giác A’BD, tức là đường thẳng AC’ vuông góc với mặt phẳng (A’BD) tại trọng tâm I của tam giác A’BD. Ta cần tìm khoảng cách A’I.

Advertisements (Quảng cáo)

Ta có \(A’I = BI = DI = {2 \over 3}A’O\) với O là tâm của hình vuông ABCD

Ta lại có \(AO’ = B{\rm{D}}{{\sqrt 3 } \over 2}\)

\( = a\sqrt 2 .{{\sqrt 3 } \over 2} = {{a\sqrt 6 } \over 2}\)

Vậy \(A’I = {2 \over 3}A’O = {2 \over 3}.{{a\sqrt 6 } \over 2} = {{a\sqrt 6 } \over 3}\)

Tương tự điểm C’ cách đều ba đỉnh của tam giác đều CB’D’, tính được khoảng cách từ C, B’, D’ tới đường chéo AC’.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)