Tính khoảng cách giữa hai cạnh AB và CD của hình tứ diện ABCD biết rằng \(AC = BC = A{\rm{D}} = B{\rm{D}} = a\) và \(AB = p,C{\rm{D}} = q\).
Gọi I và K lần lượt là trung điểm của AB và CD (h.3.80), ta có IK là đoạn vuông góc chung của AB và CD và độ dài đoạn IK là khoảng cách cần tìm:
\(I{K^2} = B{K^2} - B{I^2} = B{K^2} - {{{p^2}} \over 4}\)
Advertisements (Quảng cáo)
Mà \(B{K^2} = B{C^2} - C{K^2} = {a^2} - {{{q^2}} \over 4}\)
Vậy \(I{K^2} = {a^2} - {{{p^2} + {q^2}} \over 4}\)
Do đó \(IK = {1 \over 2}\sqrt {4{{\rm{a}}^2} - \left( {{p^2} + {q^2}} \right)} \)
Với điều kiện \(4{{\rm{a}}^2} - \left( {{p^2} + {q^2}} \right) > 0\).