Xác định a để.... Bài 6 trang 214 Sách bài tập (SBT) Đại số và giải tích 11 - Ôn tập Chương V - Đạo hàm
Xác định a để \(g’\left( x \right) \ge 0\forall x \in R,\) biết rằng
\(g\left( x \right) = \sin x - a\sin 2x - {1 \over 3}\sin 3x + 2ax.\)
Advertisements (Quảng cáo)
\(\eqalign{
& g’\left( x \right) = \cos x - 2a\cos 2x - \cos 3x + 2a \cr
& {\rm{ }} = 4a{\sin ^2}x + 2\sin x\sin 2x \cr
& {\rm{ }} = 4a{\sin ^2}x + 4{\sin ^2}x\cos x \cr
& {\rm{ }} = 4{\sin ^2}x\left( {a + \cos x} \right). \cr} \)
Rõ ràng với a > 1 thì \(a + \cos x > 0\) và \({\sin ^2}x \ge 0\) với mọi \(x \in R\) nên với a > 1 thì \(g’\left( x \right) \ge 0,\forall x \in R.\)