Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 5.50 trang 187 SBT Đại số 11 Nâng cao: Chứng minh...

Câu 5.50 trang 187 SBT Đại số 11 Nâng cao: Chứng minh rằng tiếp tuyến tại điểm bất kì của đồ thị...

Chứng minh rằng tiếp tuyến tại điểm bất kì của đồ thị hàm số, cắt trục tung tại một điểm cách đều tiếp điểm và gốc tọa độ.. Câu 5.50 trang 187 sách bài tập Đại số và Giải tích 11 Nâng cao - Ôn tập chương V - Đạo hàm

Chứng minh rằng tiếp tuyến tại điểm bất kì của đồ thị hàm số

                        y=12x4x2(C)

Cắt trục tung tại một điểm cách đều tiếp điểm và gốc tọa độ.

Để hàm số có đạo hàm thì ta phải có

                       x4x2>00<x<14.

Với điều kiện 0<x<14, ta có

                                y=18x4x4x2.

Gọi M0(x0;y0) là một điểm tuy ý thuộc đồ thị(C) ; ta có y0=12x04x20, y=18x04x04x20. Vậy phương trình tiếp tuyến tại M0(x0,y0)

         y=18x04x04x20(xx0)+12x04x20

Tiếp tuyến này cắt trục tung tại điểm T có tung độ là

yT=18x04x04x20(0x0)+12x04x20=(18x0)(x0)+2(x04x20)x04x20=x04x04x20>0

Advertisements (Quảng cáo)

Khoảng cách TM0 được tính bởi công thức

TM0=(x00)2+(12x04x20x0x04x20)2=x20(2(x04x20)x0x04x20)2=x20+(x08x20)216(x04x20)=16x3064x40+x2016x30+64x4016(x04x20)=x2016(x04x20)

Vậy

        |TM0|=x04x04x20=|TO|=yT

Điều này chứng tỏ, điểm T cách đều tiếp điểm M0 và gốc tọa độ O.

Chú ý: Có thể chứng minh bào toán này bằng phương pháp hình học như sau:

Với 0x14 thì y0 ta có

y=12x4x24y2+4x2x=0x2+x4+y2=0(x18)2+y2=(18)2

Vậy đồ thị (C) là phần đường tròn thuộc góc phần tư thứ nhất (vì x0y0) tâm I(18;0), bán kính R=18 (h.5.6)

Áp dụng tính chất: từ một điểm T ngoài đường tròn, kẻ được hai tiếp tuyến với đường tròn là TM0 và TO và ta có |TM0|=|TO| (đpcm).

             

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)