Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 3 trang 60 Toán 11 tập 1 – Chân trời sáng...

Bài 3 trang 60 Toán 11 tập 1 - Chân trời sáng tạo: Viết sáu số xen giữa các số –2 và 256 để được cấp số nhân có tám số hạng...

Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}. Phân tích và lời giải bài 3 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 3. Cấp số nhân. Số đo bốn góc của một tứ giác lập thành cấp số nhân. Tìm số đo của bốn góc đó biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất... Viết sáu số xen giữa các số –2 và 256 để được cấp số nhân có tám số hạng

Question - Câu hỏi/Đề bài

a) Số đo bốn góc của một tứ giác lập thành cấp số nhân. Tìm số đo của bốn góc đó biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.

b) Viết sáu số xen giữa các số –2 và 256 để được cấp số nhân có tám số hạng. Nếu viết tiếp thì số hạng thứ 15 là bao nhiêu?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).

Answer - Lời giải/Đáp án

a) Giả sử số đo bốn góc của tứ giác lần lượt là \({u_1},{u_1}.q,{u_1}.{q^2},{u_1}.{q^3}\left( {{u_1},q > 0} \right)\).

Tổng số đo bốn góc của một tứ giác bằng \({360^ \circ }\) nên ta có phương trình:

\({u_1} + {u_1}.q + {u_1}.{q^2} + {u_1}.{q^3} = 360 \Leftrightarrow {u_1}\left( {1 + q + {q^2} + {q^3}} \right) = 360\left( 1 \right)\)

Advertisements (Quảng cáo)

Số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất nên ta có phương trình:

\(\frac{{{u_1}.{q^3}}}{{{u_1}}} = 8 \Leftrightarrow {q^3} = 8 \Leftrightarrow q = 2\left( 2 \right)\)

Thế (2) vào (1) ta có: \({u_1}\left( {1 + 2 + {2^2} + {2^3}} \right) = 360 \Leftrightarrow {u_1} = 24\)

Vậy số đo bốn góc của tứ giác đó là: \({24^ \circ };{24^ \circ }.2 = {48^ \circ };{24^ \circ }{.2^2} = {96^ \circ };{24^ \circ }{.2^3} = {192^ \circ }\).

b) Giả sử cấp số nhân đó có số hạng đầu \({u_1}\) và công bội \(q\).

Theo đề bài ta có: \(\left\{ \begin{array}{l}{u_1} = - 2\\{u_8} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 2\\{u_1}.{q^7} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 2\\{q^7} = - 128\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 2\\q = - 2\end{array} \right.\).

Vậy ta cần viết thêm sáu số là:

\( - 2.\left( { - 2} \right) = 4;4.\left( { - 2} \right) = - 8;\left( { - 8} \right).\left( { - 2} \right) = 16;16.\left( { - 2} \right) = - 32;\left( { - 32} \right).\left( { - 2} \right) = 64;64.\left( { - 2} \right) = - 128\)

Số hạng thứ 15 của cấp số nhân là: \({u_{15}} = {u_1}.{q^{14}} = - 2.{\left( { - 2} \right)^{14}} = - 32768\).

Advertisements (Quảng cáo)