Đưa 2 vế của bất phương trình về cùng cơ số. Phân tích và giải bài 4 trang 33 SGK Toán 11 tập 2 - Chân trời sáng tạo Bài 4. Phương trình - bất phương trình mũ và lôgarit. Giải các bất phương trình sau...
Giải các bất phương trình sau:
a) \({\left( {\frac{1}{3}} \right)^{2{\rm{x}} + 1}} \le 9\);
b) \({4^x} > {2^{x - 2}}\).
Advertisements (Quảng cáo)
Đưa 2 vế của bất phương trình về cùng cơ số.
a) \({\left( {\frac{1}{3}} \right)^{2{\rm{x}} + 1}} \le 9 \Leftrightarrow {\left( {\frac{1}{3}} \right)^{2{\rm{x}} + 1}} \le {\left( {\frac{1}{3}} \right)^{ - 2}} \Leftrightarrow 2{\rm{x}} + 1 \ge - 2\) (do \(0 < \frac{1}{3} < 1\)) \( \Leftrightarrow 2{\rm{x}} > - 3 \Leftrightarrow x > - \frac{3}{2}\)
b) \({4^x} > {2^{x - 2}} \Leftrightarrow {\left( {{2^2}} \right)^x} > {2^{x - 2}} \Leftrightarrow {2^{2{\rm{x}}}} > {2^{x - 2}} \Leftrightarrow 2{\rm{x}} > x - 2\) (do \(2 > 1\)) \( \Leftrightarrow x > - 2\).