Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 4 trang 79 Toán 11 tập 1 – Chân trời sáng...

Bài 4 trang 79 Toán 11 tập 1 - Chân trời sáng tạo: Tìm các giới hạn sau: \(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{1}{{x + 1}}\)...

Bước 1: Đưa hàm số \(f\left( x \right)\) về tích của hai hàm số, trong đó một hàm số có giới hạn hữu hạn, Hướng dẫn trả lời bài 4 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 2. Giới hạn của hàm số. Tìm các giới hạn sau...

Question - Câu hỏi/Đề bài

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{1}{{x + 1}}\);

b) \(\mathop {\lim }\limits_{x \to - \infty } \left( {1 - {x^2}} \right)\);

c) \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Bước 1: Đưa hàm số \(f\left( x \right)\) về tích của hai hàm số, trong đó một hàm số có giới hạn hữu hạn, còn một hàm số có giới hạn vô cực.

Bước 2: Áp dụng quy tắc xét dấu để tính giới hạn của tích.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Áp dụng giới hạn một bên thường dùng,

Ta có : \(\left\{ \begin{array}{l}1 > 0\\x - \left( { - 1} \right) > 0,x \to - {1^ + }\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to - {1^ + }} \frac{1}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{1}{{x - \left( { - 1} \right)}} = + \infty \)

b) \(\mathop {\lim }\limits_{x \to - \infty } \left( {1 - {x^2}} \right) = \mathop {\lim }\limits_{x \to - \infty } {x^2}\left( {\frac{1}{{{x^2}}} - 1} \right) = \mathop {\lim }\limits_{x \to - \infty } {x^2}.\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{{{x^2}}} - 1} \right)\)

Ta có: \(\mathop {\lim }\limits_{x \to - \infty } {x^2} = + \infty ;\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{{{x^2}}} - 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{{x^2}}} - \mathop {\lim }\limits_{x \to - \infty } 1 = 0 - 1 = - 1\)

\( \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \left( {1 - {x^2}} \right) = - \infty \)

c) \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{ - x}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} \left( { - x} \right) = - \mathop {\lim }\limits_{x \to {3^ - }} x = - 3;\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}} = - \infty \)

\( \Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}} = + \infty \)

Advertisements (Quảng cáo)