Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Giải mục 2 trang 84, 85 Toán 11 tập 2 – Chân...

Giải mục 2 trang 84, 85 Toán 11 tập 2 - Chân trời sáng tạo: Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) cắt nhau theo giao tuyến \(d\)...

Trả lời Hoạt động 2 , Hoạt động 3, Thực hành 2 , Vận dụng 2 mục 2 trang 84, 85 SGK Toán 11 tập 2 - Chân trời sáng tạo Bài 5. Góc giữa đường thẳng và mặt phẳng. Góc nhị diện. Cho hai mặt phẳng (left( P right)) và (left( Q right)) cắt nhau theo giao tuyến (d)...Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) cắt nhau theo giao tuyến \(d\)

Hoạt động 2

Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) cắt nhau theo giao tuyến \(d\). Hãy gọi tên các nửa mặt phẳng có chung bờ \(d\). Các nửa mặt phẳng này chia không gian thành bao nhiêu phần?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Quan sát hình ảnh và trả lời câu hỏi.

Answer - Lời giải/Đáp án

Các nửa mặt phẳng có chung bờ \(d\) là: \(\left( {{P_1}} \right),\left( {{P_2}} \right),\left( {{Q_1}} \right),\left( {{Q_2}} \right)\).

Các nửa mặt phẳng này chia không gian thành 4 phần.


Hoạt động 3

Cho góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\). Gọi \(O\) là một điểm tuỳ ý trên \(d\). \(Ox\) là tia nằm trong \(\left( P \right)\) và vuông góc với \(d\), \(Oy\) là tia nằm trong \(\left( Q \right)\) và vuông góc với \(d\) (Hình 6).

a) Nêu nhận xét về vị trí tương đối giữa \(d\) và \(mp\left( {Ox,Oy} \right)\).

b) Nêu nhận xét về số đo của góc \(xOy\) khi \(O\) thay đổi trên \(d\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng định lí: Nếu đường thẳng \(d\) vuông góc với hai đường thẳng cắt nhau \(a\) và \(b\) cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).

Answer - Lời giải/Đáp án

a) Ta có:

\(\left. \begin{array}{l}d \bot Ox\\d \bot Oy\end{array} \right\} \Rightarrow d \bot mp\left( {Ox,Oy} \right)\)

b) Số đo của góc \(xOy\) không đổi khi \(O\) thay đổi trên \(d\).


Thực hành 2

Cho hình chóp tứ giác đều \(S.ABCD\) với \(O\) là tâm của đáy và có tất cả các cạnh đều bằng \(a\). Xác định và tính góc phẳng nhị diện:

a) \(\left[ {S,BC,O} \right]\);

b) \(\left[ {C,SO,B} \right]\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a’\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a’} \right)\).

Answer - Lời giải/Đáp án

a) Gọi \(H\) là trung điểm của \(BC\).

\(\Delta SBC\) đều \( \Rightarrow SH \bot BC\)

\(\Delta OBC\) vuông cân tại \(O \Rightarrow OH \bot BC\)

Vậy \(\widehat {SHO}\) là góc phẳng nhị diện \(\left[ {S,BC,O} \right]\).

Ta có: \(O\) là trung điểm của \(BD\)

\(H\) là trung điểm của \(BC\)

Advertisements (Quảng cáo)

\( \Rightarrow OH\) là đường trung bình của \(\Delta BC{\rm{D}}\)

\( \Rightarrow OH = \frac{1}{2}CD = \frac{a}{2}\)

\(AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \Rightarrow OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SOH\) vuông tại \(O\) có: \(SO = \sqrt {S{C^2} - O{C^2}} = \frac{{a\sqrt 2 }}{2}\)

\(\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \sqrt 2 \Rightarrow \widehat {SHO} \approx 54,{7^ \circ }\)

b) Ta có:

\(\begin{array}{l}SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OB\\SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OC\end{array}\)

Vậy \(\widehat {BOC}\) là góc phẳng nhị diện \(\left[ {C,SO,B} \right]\).

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow \widehat {BOC} = {90^ \circ }\).


Vận dụng 2

Cho biết kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều với chiều cao 98 m và cạnh đáy 180 m. Tính số đo góc nhị diện tạo bởi mặt bên và mặt đáy.

(Nguồn: https://en.wikipedia.org/wiki/Memphis Pyramid)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

Answer - Lời giải/Đáp án

Mô hình hoá kim tự tháp bằng chóp tứ giác đều \(S.ABCD\) với \(O\) là tâm của đáy. Vậy \(AB = 180,SO = 98\)

Gọi \(H\) là trung điểm của \(BC\).

\(\Delta SBC\) đều \( \Rightarrow SH \bot BC\)

\(\Delta OBC\) vuông cân tại \(O \Rightarrow OH \bot BC\)

Vậy \(\widehat {SHO}\) là góc nhị diện tạo bởi mặt bên và mặt đáy.

Ta có: \(O\) là trung điểm của \(BD\)

\(H\) là trung điểm của \(BC\)

\( \Rightarrow OH\) là đường trung bình của \(\Delta BC{\rm{D}}\)

\( \Rightarrow OH = \frac{1}{2}CD = 90\)

\(\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \frac{{49}}{{45}} \Rightarrow \widehat {SHO} \approx 47,{4^ \circ }\)

Vậy số đo góc nhị diện tạo bởi mặt bên và mặt đáy là \(47,{4^ \circ }\).

Advertisements (Quảng cáo)