Hoạt động 6
Cho hàm số \(u = \sin x\) và hàm số \(y = {u^2}\).
a) Tính \(y\) theo \(x\).
b) Tính \(y{‘_x}\) (đạo hàm của \(y\) theo biến \(x\)), \(y{‘_u}\) (đạo hàm của \(y\) theo biến \(u\)) và \(u{‘_x}\) (đạo hàm của \(u\) theo biến \(x\)) rồi so sánh \(y{‘_x}\) với \(y{‘_u}.u{‘_x}\).
a) Thay \(u = \sin x\) vào \(y\).
b) Sử dụng công thức tính đạo hàm: \({\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}};{\left( {\sin x} \right)^\prime } = \cos x\).
a) \(y = {u^2} = {\left( {\sin x} \right)^2} = {\sin ^2}x\).
b) Ta có:
\(\begin{array}{l}y{‘_x} = {\left( {\sin x.\sin x} \right)^\prime } = {\left( {\sin x} \right)^\prime }.\sin x + \sin x.{\left( {\sin x} \right)^\prime } = \cos x.\sin x + \sin x.\cos x = 2\sin x\cos x\\y{‘_u} = {\left( {{u^2}} \right)^\prime } = 2u\\u{‘_x} = {\left( {\sin x} \right)^\prime } = \cos x\\ \Rightarrow y{‘_u}.u{‘_x} = 2u.\cos x = 2\sin x\cos x\end{array}\)
Vậy \(y{‘_x} = y{‘_u}.u{‘_x}\).
Thực hành 7
Tính đạo hàm của các hàm số sau:
a) \(y = {\left( {2{x^3} + 3} \right)^2}\);
Advertisements (Quảng cáo)
b) \(y = \cos 3x\);
c) \(y = {\log _2}\left( {{x^2} + 2} \right)\).
Sử dụng công thức tính đạo hàm của hàm hợp: \(y{‘_x} = y{‘_u}.u{‘_x}\).
a) Đặt \(u = 2{{\rm{x}}^3} + 3\) thì \(y = {u^2}\). Ta có: \(u{‘_x} = {\left( {2{{\rm{x}}^3} + 3} \right)^\prime } = 6{{\rm{x}}^2}\) và \(y{‘_u} = {\left( {{u^2}} \right)^\prime } = 2u\).
Suy ra \(y{‘_x} = y{‘_u}.u{‘_x} = 2u.6{{\rm{x}}^2} = 2\left( {2{{\rm{x}}^3} + 3} \right).6{{\rm{x}}^2} = 12{{\rm{x}}^2}\left( {2{{\rm{x}}^3} + 3} \right)\).
Vậy \(y’ = 12{{\rm{x}}^2}\left( {2{{\rm{x}}^3} + 3} \right)\).
b) Đặt \(u = 3{\rm{x}}\) thì \(y = \cos u\). Ta có: \(u{‘_x} = {\left( {3{\rm{x}}} \right)^\prime } = 3\) và \(y{‘_u} = {\left( {\cos u} \right)^\prime } = - \sin u\).
Suy ra \(y{‘_x} = y{‘_u}.u{‘_x} = - \sin u.3 = - 3\sin 3{\rm{x}}\).
Vậy \(y’ = - 3\sin 3{\rm{x}}\).
c) Đặt \(u = {x^2} + 2\) thì \(y = {\log _2}u\). Ta có: \(u{‘_x} = {\left( {{x^2} + 2} \right)^\prime } = 2{\rm{x}}\) và \(y{‘_u} = {\left( {{{\log }_2}u} \right)^\prime } = \frac{1}{{u\ln 2}}\).
Suy ra \(y{‘_x} = y{‘_u}.u{‘_x} = \frac{1}{{u\ln 2}}.2 = \frac{1}{{\left( {{x^2} + 2} \right)\ln 2}}.2 = \frac{2}{{\left( {{x^2} + 2} \right)\ln 2}}\).
Vậy \(y’ = \frac{2}{{\left( {{x^2} + 2} \right)\ln 2}}\).