Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Bài 29 trang 108 Toán 11 tập 2 – Kết nối tri...

Bài 29 trang 108 Toán 11 tập 2 - Kết nối tri thức: Tính đạo hàm của các hàm số sau...

Sử dụng các công thức và quy tắc để tính đạo hàm Hướng dẫn giải bài 29 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức Bài tập cuối năm. Tính đạo hàm của các hàm số sau...

Question - Câu hỏi/Đề bài

Tính đạo hàm của các hàm số sau:

a) \(y = 3{x^2} - 2\sqrt x \);

b) \(y = \sqrt {1 + 2x - {x^2}} \);

c) \(y = \tan \frac{x}{2} - \cot \frac{x}{2}\)

d) \(y = {e^{ex}} + \ln {x^2}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Sử dụng các công thức và quy tắc để tính đạo hàm

Answer - Lời giải/Đáp án

a) \(y’ = {\left( {3{x^2} - 2\sqrt x } \right)^\prime } = 6x - \frac{1}{{\sqrt x }}\)

b) \(y’ = {\left( {\sqrt {1 + 2x - {x^2}} } \right)^\prime } = \frac{{{{\left( {1 + 2x - {x^2}} \right)}^\prime }}}{{2\sqrt {1 + 2x - {x^2}} }} = \frac{{2 - 2x}}{{2\sqrt {1 + 2x - {x^2}} }} = \frac{{1 - x}}{{\sqrt {1 + 2x - {x^2}} }}\)

c)

\(y’ = {\left( {\tan \frac{x}{2} - \cot \frac{x}{2}} \right)^\prime } = \frac{1}{2}.\frac{1}{{{{\cos }^2}\frac{x}{2}}} + \frac{1}{2}.\frac{1}{{{{\sin }^2}\frac{x}{2}}} = \frac{1}{{1 + \cos x}} + \frac{1}{{1 - \cos x}}\\ = \frac{2}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}} = \frac{2}{{1 - {{\cos }^2}x}} = \frac{2}{{{{\sin }^2}x}}\)

d) \(y’ = {\left( {{e^{ex}} + \ln {x^2}} \right)^\prime } = {\left( {ex} \right)^\prime }{e^{ex}} + \frac{{{{\left( {{x^2}} \right)}^\prime }}}{{{x^2}}} = {e^{ex + 1}} + \frac{{2x}}{{{x^2}}} = {e^{ex + 1}} + \frac{2}{x}\).

Advertisements (Quảng cáo)