Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Giải mục 2 trang 43, 44 Toán 11 tập 1 – Kết...

Giải mục 2 trang 43, 44 Toán 11 tập 1 - Kết nối tri thức: Xét dãy số \(({u_n})\) gồm tất cả các số nguyên dương chia hết cho 5...

Giải chi tiết HĐ 3, LT 2 mục 2 trang 43, 44 SGK Toán 11 tập 1 - Kết nối tri thức Bài 5. Dãy số. Xét dãy số (({u_n})) gồm tất cả các số nguyên dương chia hết cho 5...

Hoạt động 3

Xét dãy số \(({u_n})\) gồm tất cả các số nguyên dương chia hết cho 5:

\(5;10;15;20;25;30; \ldots \)

a) Viết công thức số hạng tổng quát \({u_n}\) của dãy số.

b) Xác định số hạng đầu và viết công thức tính số hạng thứ n theo số hạng thứ n – 1 của dãy số. Công thức thu được gọi là hệ thức truy hồi.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào định nghĩa dãy số, xác định được số hạng đầu và số hạng tổng quát.

Answer - Lời giải/Đáp án

a) Công thức số hạng tổng quát \({u_n} = 5n,\;n \in {N^*}\).

b)

Số hạng đầu \({u_1} = 5\), \({u_n} = {u_{n - 1}} + 5\)

Advertisements (Quảng cáo)

Suy ra hệ thức truy hồi: \(\left\{ \begin{array}{l}{u_1}\; = 5\\{u_n} = {u_{n - 1}} + 5\end{array} \right.\)


Luyện tập 2

a) Viết năm số hạng đầu của dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát \({u_n} = n!.\).

b) Viết năm số hạng đầu của dãy số Fibonacci \(\left( {{F_n}} \right)\) cho bởi hệ thức truy hồi

\(\{ {F_1} = 1,\;{F_2} = 1\;{F_n} = {F_{n - 1}} + {F_{n - 2}}\;\left( {n \ge 3} \right)\;\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng công thức giai thừa bằng tích các số liên tiếp.

Công thức Fibonacci đã cho.

Answer - Lời giải/Đáp án

a) 5 số hạng đầu của dãy số là: 1; 2; 6; 24; 120.

b) \({F_1} = 1,\;{F_2} = 1,\;{F_3} = 2,\;{F_4} = 3,\;{F_5} = 5\;\).

Advertisements (Quảng cáo)