Bài 22. Đa giác lồi n cạnh gọi là n – giác đều nếu tất cả các cạnh của nó bằng nhau và tất cả các góc của nó bằng nhau khi và chỉ khi chúng có cạnh bằng nhau
Theo định nghĩa, hai n-giác đều bằng nhau thì cạnh bằng nhau.
Ngược lại, giả sử hai n-giác đều A1A2…An có cạnh bằng nhau
Khi đó nếu gọi O và O’ lần lượt là tâm các đường tròn ngoại tiếp hai đa giác đó thì hai tam giác OA1A2 và O’A’1A’2 bằng nhau
Advertisements (Quảng cáo)
Vậy có phép dời hình F biến tam giác OA1A2 thành tam giác O’A’1A’2.
Vì hai tam giác OA2A3 và O’A’2A’3 cũng bằng nhau nên F biến điểm A3 thành điểm A’3 (vì A3 không thể biến thành A’1)
Lập luận tương tự ta cũng có F biến các điểm A4,…, An lần lượt thành các điểm A4 ,…, An
Như vậy hai đa giác đều đã cho bằng nhau