Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 24 trang 205 Đại số và Giải tích 11 Nâng cao,...

Câu 24 trang 205 Đại số và Giải tích 11 Nâng cao, Viết phương trình tiếp tuyến của đồ thị hàm số...

Viết phương trình tiếp tuyến của đồ thị hàm số . Câu 24 trang 205 SGK Đại số và Giải tích 11 Nâng cao - Bài 2. Các quy tắc tính đạo hàm

Viết phương trình tiếp tuyến của đồ thị hàm số

a. \(y = {{x - 1} \over {x + 1}}\), biết hoành độ tiếp điểm là x0 = 0

b. \(y = \sqrt {x + 2} ,\) biết tung độ tiếp điểm là y0 = 2.

a.

\(\eqalign{  & f\left( x \right) = {{x - 1} \over {x + 1}}  \cr  & {x_0} = 0 \Rightarrow {y_0} = f\left( 0 \right) =  - 1  \cr  & f’\left( x \right) = {{\left| {\matrix{   1 & { - 1}  \cr   1 & 1  \cr  } } \right|} \over {{{\left( {x + 1} \right)}^2}}} = {2 \over {{{\left( {x + 1} \right)}^2}}} \Rightarrow f\left( 0 \right) = 2 \cr} \)

Advertisements (Quảng cáo)

Phương trình tiếp tuyến cần tìm là :

\(y - \left( { - 1} \right) = 2\left( {x - 0} \right) \Leftrightarrow y = 2x - 1\)

b.

\(\eqalign{  & f\left( x \right) = \sqrt {x + 2} ;f\left( {{x_0}} \right) = 2 \cr&\Leftrightarrow \sqrt {{x_0} + 2}  = 2 \Leftrightarrow {x_0} = 2  \cr  & f’\left( x \right) = {1 \over {2\sqrt {x + 2} }} \Rightarrow f’\left( 2 \right) = {1 \over 4} \cr} \)

Phương trình tiếp tuyến cần tìm là :

\(y - 2 = {1 \over 4}\left( {x - 2} \right) \Leftrightarrow y = {{x + 6} \over 4}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)