Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 24 trang 227 SGK Đại số và Giải tích 11 Nâng...

Câu 24 trang 227 SGK Đại số và Giải tích 11 Nâng cao, Cho hyperbol (H) xác định bởi phương trình...

Cho hyperbol (H) xác định bởi phương trình . Câu 24 trang 227 SGK Đại số và Giải tích 11 Nâng cao - ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH

Cho hyperbol (H) xác định bởi phương trình \(y = {1 \over x}\)

a. Tìm phương trình tiếp tuyến (T) của (H) tại tiếp điểm A có hoành độ a (với a ≠ 0)

b. Giả sử (T) cắt trục Ox tại điểm I và cắt trục Oy tại điểm J. Chứng minh rằng A là trung điểm của đoạn thẳng IJ. Từ đó suy ra cách vẽ tiếp tuyến (T).

c. Chứng minh rằng diện tích tam giác OIJ không phụ thuộc vào vị trí của điểm A.

Với mọi x ≠ 0, ta có : \(f’\left( x \right) =  - {1 \over {{x^2}}}\)

Advertisements (Quảng cáo)

a. Phương trình tiếp tuyến (T) tại điểm \(A\left( {a;{1 \over a}} \right)\) là :

\(y =  - {1 \over {{a^2}}}\left( {x - a} \right)\,\,hay\,y =  - {1 \over {{a^2}}}x + {2 \over a}\)

b. Ta nhận thấy \(I\left( {2a;0} \right);\,J\left( {0;{2 \over a}} \right)\)

Kiểm tra dễ dàng rằng điểm \(A\left( {a;{1 \over a}} \right)\) là trung điểm của đoạn IJ. Từ đó suy ra cách vẽ tiếp tuyến (T). Đó là đường thẳng IJ.

c. Diện tích tam giác OIJ là :

\(S = {1 \over 2}\left| {OI} \right|.\left| {OJ} \right| = {1 \over 2}\left| {2a.{2 \over a}} \right| = 2\) (đvdt)

Vì S không phụ thuộc vào a nên diện tích tam giác OIJ không phụ thuộc vào vị trí của điểm A ϵ (H)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)