Cho hàm số \(y = m{x^3} + {x^2} + x - 5.\) Tìm m để :
a. y’ bằng bình phương của một nhị thức bậc nhất ;
b. y’ có hai nghiệm trái dấu ;
c. \(y’ > 0\) với mọi x.
a. Ta có: \(y’ = 3m{x^2} + 2x + 1\)
Advertisements (Quảng cáo)
Ta có \(y’ = 3m{x^2} + 2x + 1\) là bình phương của một nhị thức bậc nhất khi và chỉ khi
\(\left\{ {\matrix{ {3m > 0} \cr {\Delta ‘ = 1 - 3m = 0} \cr } } \right.\Leftrightarrow m={1\over 3}\)
b. y’ có hai nghiệm trái dấu ⇔ \(3m.1 < 0 \Leftrightarrow m < 0\)
c.+) Với \(m = 0;\; y’ = 2x + 1 > 0 \Leftrightarrow x > - {1 \over 2}\) (không thỏa yêu cầu)
+) Với \(m ≠ 0\)
\(y’ > 0,\forall x \in\mathbb R \Leftrightarrow \left\{ {\matrix{ {3m > 0} \cr {\Delta ‘ = 1 - 3m < 0} \cr } } \right. \Leftrightarrow m > {1 \over 3}\)