Bài 38. Giải các phương trình sau :
a. \({\cos ^2}x - 3{\sin ^2}x = 0\)
b. \({\left( {\tan x + \cot x} \right)^2} - \left( {\tan x + \cot x} \right) = 2\)
c. \(\sin x + {\sin ^2}{x \over 2} = 0,5\)
a.
\(\eqalign{
& {\cos ^2}x - 3{\sin ^2}x = 0 \cr
& \Leftrightarrow {{1 + \cos 2x} \over 2} - {{3\left( {1 - \cos 2x} \right)} \over 2} = 0 \cr
& \Leftrightarrow \cos 2x = {1 \over 2} \Leftrightarrow 2x = \pm {\pi \over 3} + k2\pi \cr
& \Leftrightarrow x = \pm {\pi \over 6} + k\pi \cr} \)
Advertisements (Quảng cáo)
b. Đặt \(t = \tan x + \cot x\) với điều kiện \(|t| = |\tan x| + |\cot x| ≥ 2\) (BĐT Cosi)
Ta có:
\(\eqalign{& {t^2} - t = 2 \Leftrightarrow {t^2} - t - 2 = 0 \Leftrightarrow \left[ {\matrix{{t = - 1\,\left( \text{loại} \right)} \cr {t = 2} \cr} } \right. \cr & t = 2 \Leftrightarrow \tan x + \cot x = 2 \Leftrightarrow \tan x = {1 \over {\tan x}} = 2 \cr & \Leftrightarrow {\tan ^2}x - 2\tan x + 1 = 0 \cr & \Leftrightarrow \tan x = 1 \Leftrightarrow x = {\pi \over 4} + k\pi \cr} \)
c.
\(\eqalign{
& \sin x + {\sin ^2}{x \over 2} = 0,5 \cr
& \Leftrightarrow \sin x + {{1 - \cos x} \over 2} = {1 \over 2} \Leftrightarrow \sin x = {1 \over 2}\cos x \cr
& \Leftrightarrow \tan x = {1 \over 2} \Leftrightarrow x = \alpha + k\pi \,\text{ trong đó }\,\tan \alpha = {1 \over 2} \cr} \)
Baitapsgk.com