Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 3 trang 141 sgk đại số 11: Bài 3. Hàm số...

Bài 3 trang 141 sgk đại số 11: Bài 3. Hàm số liên tục...

Bài 3 trang 141 sgk đại số 11: Bài 3. Hàm số liên tục. Cho hàm số

Bài 3. Cho hàm số \(f(x) = \left\{\begin{matrix} 3x + 2; & x<-1\\ x^{2}-1 & x \geq -1 \end{matrix}\right.\)

a) Vẽ đồ thị của hàm số \(y = f(x)\). Từ đó nêu nhận xét về tính liên tục của hàm số trên tập xác định của nó.

b) Khẳng định nhận xét trên bằng một chứng minh.

a)

Đồ thị hàm số \(y = f(x)\) là một đường không liền nét mà bị đứt quãng tại \(x_0= -1\). Vậy hàm số đã cho liên tục trên khoảng \((-∞; -1)\) và \((- 1; +∞)\).

b)

Advertisements (Quảng cáo)

+) Nếu \(x < -1\): \(f(x) = 3x + 2\) liên tục trên \((-∞; -1)\) (vì đây là hàm đa thức).

+) Nếu \(x> -1\): \(f(x) = x^2- 1\) liên tục trên \((-1; +∞)\) (vì đây là hàm đa thức).

+) Tại \(x = -1\);

Ta có 

\(\underset{x\rightarrow -1^{-}}{lim} f(x) = \)\(\underset{x\rightarrow -1^{-}}{lim} (3x + 2) = 3(-1) +2 = -1\).

\(\underset{x\rightarrow -1^{+}}{lim} f(x) = \underset{x\rightarrow -1^{+}}{lim} (x^2- 1) = (-1)^2- 1 = 0\).

Vì \(\underset{x\rightarrow -1^{-}}{lim} f(x) ≠ \underset{x\rightarrow -1^{+}}{lim} f(x)\) nên không tồn tại \(\underset{x\rightarrow -1}{lim} f(x)\). Vậy hàm số gián đoạn tại \(x_0= -1\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)