Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 6 trang 119 sgk Hình học 11: Bài 5. Khoảng cách

Bài 6 trang 119 sgk Hình học 11: Bài 5. Khoảng cách...

Bài 6 trang 119 sgk Hình học 11: Bài 5. Khoảng cách. Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh AB và CD...

Bài 6. Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh \(AB\) và \(CD\) của tứ diện \(ABCD\) là đường vuông góc chung của \(AB\) và \(CD\) thì \(AC = BD\) và \(AD = BC\).

(H.3.67) 

Qua \(I\) kẻ đường thẳng \(d // CD\), lấy trên \(d\) điểm \(E, F\) sao cho \(IE = IF = \frac{CD}{2}\) (\(I\) là trung điểm của \(EF\)). \(IJ\) vuông góc với \(CD\) \(\Rightarrow IJ\) vuông góc với \(EF\), mà \(IJ\) cũng vuông góc với \(AB\Rightarrow IJ \bot (AEBF)\).

Ta có \(CDFE\) là hình bình hành có \(IJ\) là đường trung bình

Do đó \(CE\) và \(DF\) cùng song song với \(IJ\) 

Suy ra \(CE\) và \(DF\) cùng vuông góc với mp \((AEBF)\) 

 \(\Rightarrow DF ⊥ AF, CE ⊥ IE\).

Advertisements (Quảng cáo)

\(\Delta AIF = \Delta BIE(c.g.c)\) suy ra: \(AF=BE\)

Xét \(∆DFA\) và \(∆CEB\) có:

  +) \(\widehat E = \widehat F( = {90^0})\) 

  +) \(AF=BE\)

  +) \(DF=CE\)

\(\Rightarrow ∆DFA=∆CEB(c.g.c)\)

\(\Rightarrow AD = BC\). 

Chứng minh tương tự ta được \(BD = AC\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)