Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 8 trang 120 Hình học 11: Bài 5. Khoảng cách

Bài 8 trang 120 Hình học 11: Bài 5. Khoảng cách...

Bài 8 trang 120 sgk Hình học 11: Bài 5. Khoảng cách. Cho tứ diện đều ABCD cạnh a...

Bài 8. Cho tứ diện đều \(ABCD\) cạnh \(a\). Tính khoảng cách giữa hai cạnh đối diện của tứ diện. 

(H.3.69) 

Gọi \(M, N\) lần lượt là trung điểm của \(AD\) và \(BC\),

\(\Delta BAC = \Delta BDC(c.c.c)\) \( \Rightarrow AN = DN\) (hai đường trung tuyến tương ứng của hai tam giác bằng nhau)

Tam giác \(AND\) cân tại \(N\), nên \(MN\) vừa là đường trung tuyến đồng thời là đường cao do đó \(MN\bot AD\)  (1)

Advertisements (Quảng cáo)

Chứng minh tương tự ta được: \(MN\bot BC\)          (2)

Từ (1) và (2) suy ra \(MN\) là đường vuông góc chung của \(BC\) và \(AD\)

Tam giác \(ABC\) đều nên \(AN={{a\sqrt 3 } \over 2}\)

Áp dụng định lí Pytago vào tam giác vuông \(AMN\) ta có:

\(A{N^2} = M{N^2} + A{M^2}\)

\(MN = \sqrt {A{N^2} - A{M^2}}  = \sqrt {{{3{a^2}} \over 4} - {{{a^2}} \over 4}}  = {{a\sqrt 2 } \over 2}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)