Bài 9. Cho biết trong một cấp số nhân, hiệu của số hạng thứ ba và số hạng thứ hai bằng 12 và nếu thêm 10 vào số hạng thứ nhất, thêm 8 vào số hạng thứ hai, còn giữ nguyên số hạng thứ ba thì ba số mới lập thành một cấp số cộng. Hãy tính tổng của năm số hạng đầu của cấp số nhân đã cho.
_ Theo giả thiết ta có:
Cấp số nhân: \(u_1, u_2, u_3...\)
Cấp số cộng: \(u_1 + 10, u_2 + 8, u_3...\)
Ta có hệ phương trình:
Advertisements (Quảng cáo)
\(\eqalign{
& \left\{ \matrix{
{u_3} - {u_2} = 12 \hfill \cr
{u_2} + 8 = {{({u_1} + 10) + {u_3}} \over 2} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{u_1}{q^2} - {u_1}q = 12 \hfill \cr
2({u_1}q + 8) = {u_1} + 10 + {u_1}{q^2} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{u_1}({q^2} - q) = 12 \hfill \cr
{u_1}({q^2} - 2q + 1) = 6 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{u_1}({q^2} - q) = 12(1) \hfill \cr
{u_1}{(q - 1)^2} = 6(2) \hfill \cr} \right.({u_1} \ne 0,q \ne 0,q \ne 1) \cr} \)
Lấy (1) chia cho 2 vế theo vế, ta được:
\({{{q^2} - q} \over {{{(q - 1)}^2}}} = 2 \Leftrightarrow q=2 \)
Với \(q = 2\), thay vào (1) ta có: \(u_1(4 – 2) = 12 ⇔ u_1= 6\)
Lúc đó:\({S_5} = {u_1}{{1 - {q^5}} \over {1 - q}} = 6.{{1 - {2^5}} \over {1 - 2}} = 186\).