Sử dụng công thức toạ độ trung điểm \(M\) của đoạn thẳng \(AB\): \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{y_A} + {z_B}}}{2}} \right)\). Hướng dẫn cách giải/trả lời - Bài 19 trang 74 sách bài tập toán 12 - Cánh diều - Bài 3. Biểu thức tọa độ của các phép toán vecto. Cho hai điểm (Aleft( {2;2; - 1} right)) và (Bleft( {4;6; - 3} right)). Toạ độ trung điểm (M) của đoạn thẳng (AB) là: A. (left( {3;4; - 2} right)). B. (left( {6;8; - 4} right)). C...
Cho hai điểm \(A\left( {2;2; - 1} \right)\) và \(B\left( {4;6; - 3} \right)\). Toạ độ trung điểm \(M\) của đoạn thẳng \(AB\) là:
A. \(\left( {3;4; - 2} \right)\)
B. \(\left( {6;8; - 4} \right)\)
C. \(\left( {1;2; - 1} \right)\)
D. \(\left( { - 1; - 2;1} \right)\)
Advertisements (Quảng cáo)
Sử dụng công thức toạ độ trung điểm \(M\) của đoạn thẳng \(AB\):
\(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{y_A} + {z_B}}}{2}} \right)\).
\(M\left( {\frac{{2 + 4}}{2};\frac{{2 + 6}}{2};\frac{{\left( { - 1} \right) + \left( { - 3} \right)}}{2}} \right) \Leftrightarrow M\left( {3;4; - 2} \right)\).
Chọn A.