Trang chủ Lớp 12 SBT Toán 12 - Kết nối tri thức Bài 1.15 trang 15 SBT Toán 12 – Kết nối tri thức:...

Bài 1.15 trang 15 SBT Toán 12 - Kết nối tri thức: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau...

Ta cần tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {0;3} \right]\) nhưng \(f\left( x \right)\) là hàm có hai công thức. Phân tích và lời giải - Bài 1.15 trang 15 sách bài tập toán 12 - Kết nối tri thức - Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau: (fleft( x right) = left{ begin{array}{l}2x - 1, {rm{ }}0 le x le 2{x^2} - 5x + 9, {rm{ }}2 < x le 3. end{array} right...

Question - Câu hỏi/Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:

\(f\left( x \right) = \left\{ \begin{array}{l}2x - 1,{\rm{ }}0 \le x \le 2\\{x^2} - 5x + 9,{\rm{ }}2

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Ta cần tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {0;3} \right]\) nhưng \(f\left( x \right)\) là hàm có hai công thức trên \(f\left( x \right)\) nên sẽ tách thành hai trường hợp là \(x \in \left[ {0;2} \right]\) và \(x \in \left( {2;\left. 3 \right]} \right.\). Với mỗi trường hợp ta lần lượt thực hiện các bước sau:

- Tìm các điểm thuộc đoạn/nửa khoảng đang xét mà tại đó giá trị đạo hàm bằng không hoặc không tồn tại.

- Tính giá trị của hàm số tại các điểm vừa tìm được ở bước trước và tại biên của đoạn đang xét (nếu có).

Advertisements (Quảng cáo)

Sau khi thực hiện các bước trên với cả hai trường hợp, tìm số lớn nhất, nhỏ nhất trong các số vừa tính ta thu được giá trị lớn nhất, nhỏ nhất của hàm số trên toàn đoạn \(\left[ {0;3} \right]\).

Answer - Lời giải/Đáp án

+ Xét \(x \in \left[ {0;2} \right]\) ta có \(f\left( x \right) = 2x - 1\).

Ta có \(f’\left( x \right) = 2 \ne 0{\rm{ }}\forall x \in \left( {0;2} \right)\). Mặt khác \(f\left( 0 \right) = 2 \cdot 0 - 1 = - 1;{\rm{ f}}\left( 2 \right) = 2 \cdot 2 - 1 = 3.\)

+ Xét \(x \in \left( {2;\left. 3 \right]} \right.\) ta có \(f\left( x \right) = {x^2} - 5x + 9\). Khi đó \(f’\left( x \right) = 0 \Leftrightarrow 2x - 5 = 0 \Leftrightarrow x = \frac{5}{2} \in \left( {2;3} \right)\).

Ta có \(f\left( {\frac{5}{2}} \right) = {\left( {\frac{5}{2}} \right)^2} - 5 \cdot \frac{5}{2} + 9 = \frac{{11}}{4};{\rm{ f}}\left( 3 \right) = {3^2} - 5 \cdot 3 + 9 = 3.\)

Vậy \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = - 1\); \(\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 2 \right) = f\left( 3 \right) = 3\).

Advertisements (Quảng cáo)