Trang chủ Lớp 12 SBT Toán 12 - Kết nối tri thức Bài 1.37 trang 26 SBT Toán 12 – Kết nối tri thức:...

Bài 1.37 trang 26 SBT Toán 12 - Kết nối tri thức: Số lượng sản phẩm cần sản xuất là bao nhiêu để chi phí trung bình là thấp nhất?...

Ý a: Khảo sát hàm số \(y = f\left( x \right) = \frac{{C\left( x \right)}}{x} = \frac{{0, 2{x^2} + 10x + 5}}{x}\) theo các bước đã học. Ý b. Vận dụng kiến thức giải - Bài 1.37 trang 26 sách bài tập toán 12 - Kết nối tri thức - Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. Giả sử chi phí để sản xuất (x) sản phẩm của một nhà máy được cho bởi (Cleft( x right) = 0, 2{x^2} + 10x + 5) (triệu đồng)...

Question - Câu hỏi/Đề bài

Giả sử chi phí để sản xuất \(x\) sản phẩm của một nhà máy được cho bởi \(C\left( x \right) = 0,2{x^2} + 10x + 5\) (triệu đồng). Khi đó chi phí trung bình để sản xuất một đơn vị sản phẩm là \(f\left( x \right) = \frac{{C\left( x \right)}}{x}\).

a) Khảo sát sự biến thiên của hàm số \(y = f\left( x \right)\).

b) Số lượng sản phẩm cần sản xuất là bao nhiêu để chi phí trung bình là thấp nhất?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Ý a: Khảo sát hàm số \(y = f\left( x \right) = \frac{{C\left( x \right)}}{x} = \frac{{0,2{x^2} + 10x + 5}}{x}\) theo các bước đã học.

Ý b: Từ bảng biến thiên suy ra giá trị nhỏ nhất của hàm số.

Answer - Lời giải/Đáp án

a) Xét hàm số \(y = f\left( x \right) = \frac{{C\left( x \right)}}{x} = \frac{{0,2{x^2} + 10x + 5}}{x}\) .

Tập xác định \(\left[ {1; + \infty } \right)\).

Advertisements (Quảng cáo)

Sự biến thiên: \(f’\left( x \right) = {\left( {\frac{{0,2{x^2} + 10x + 5}}{x}} \right)^\prime } = \frac{{0,2{x^2} - 5}}{{{x^2}}}\).

Khi đó \(f’\left( x \right) = 0 \Leftrightarrow \frac{{0,2{x^2} - 5}}{{{x^2}}} = 0 \Leftrightarrow x = 5\) do \(x \ge 1\).

+ Ta có \(S’\left( x \right) = 0 \Leftrightarrow \frac{{6{{\left( {x - 4} \right)}^2} - 1200}}{{{{\left( {x - 4} \right)}^2}}} = 0 \Leftrightarrow 6{\left( {x - 4} \right)^2} - 1200 = 0 \Leftrightarrow x = 4 + 10\sqrt 2 \).

+ Hàm số đồng biến trên khoảng \(\left( {5; + \infty } \right)\), nghịch biến trên khoảng \(\left( {1;5} \right)\).

+ Hàm số đạt cực tiểu tại \(x = 5\) với \({f_{CT}} = 12\).

+ Giới hạn tại vô cực \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \)

+ Bảng biến thiên:

b) Từ bảng biến thiên suy ra số lượng sản phẩm cần sản xuất là \(x = 5\) để chi phí sản xuất trung bình là thấp nhất: \({f_{CT}} = 12\).

Advertisements (Quảng cáo)