Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 1.29 trang 22 sách bài tập – Hình học 12: Chứng...

Bài 1.29 trang 22 sách bài tập – Hình học 12: Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít...

Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất ba cạnh.. Bài 1.29 trang 22 sách bài tập (SBT) – Hình học 12 - ĐỀ TOÁN TỔNG HỢP - CHƯƠNG I. KHỐI ĐA ĐIẾN

Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất ba cạnh.

Hướng dẫn làm bài:

Advertisements (Quảng cáo)

Lấy một đỉnh B tùy ý của hình đa diện (H). Gọi M1 là một mặt của hình đa diện (H) chứa B. Gọi A, B, C là ba đỉnh liên tiếp của M1. Khi đó AB, BC là hai cạnh của (H). Gọi M2 là mặt khác với M1 và có chung cạnh AB với M1. Khi đó M2 còn có ít nhất một đỉnh D sao cho A, B, D là ba đỉnh khác nhau liên tiếp của M2. Nếu  \(D \equiv C\)  thì M1 và M2 có hai cạnh chung AB và BC, điều này vô lí.  Vậy  D phải khác C. Do đó qua đỉnh B có ít nhất ba cạnh BA, BC và BD.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)