Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 1.32 trang 22 sách bài tập (SBT) – Hình học 12:...

Bài 1.32 trang 22 sách bài tập (SBT) – Hình học 12: Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD, các mặt (SAB) và...

Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD, các mặt (SAB) và (SAD) vuông góc với đáy. Góc giữa mặt (SAC) và đáy bằng 600, AB = 2a , BC = a. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AB và SC theo a.. Bài 1.32 trang 22 sách bài tập (SBT) – Hình học 12 - ĐỀ TOÁN TỔNG HỢP - CHƯƠNG I. KHỐI ĐA ĐIẾN

Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD, các mặt (SAB) và (SAD) vuông góc với đáy. Góc giữa mặt (SAC) và đáy bằng 600, AB = 2a , BC = a. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AB và SC theo a.

Hướng dẫn làm bài:

Vì các mặt (SAB) và (SAD) vuông góc với đáy nên \(SA \bot (ABCD)\) . Ta có:

\(\left\{ {\matrix{{BC \bot AB} \cr {BC \bot SA} \cr} } \right. \Rightarrow  BC \bot (SAB)\)

⟹ góc\(((SBC),(ABCD)) = \widehat {SBA} = {60^0}\)

Advertisements (Quảng cáo)

Do đó: \(SA = 2a\tan {60^0} = 2a\sqrt 3 \)    

         \({V_{S.ABCD}} = {1 \over 3}2a\sqrt 3 .2a.a = {{4\sqrt 3 } \over 3}{a^3}\)

Vì CD // AB nên d(AB. CD) = d(AB, (SCD)). Hạ \(AH \bot SD\)  , để ý rằng \(CD \bot (SAD) \Rightarrow AH \bot (SCD)\).

Do đó  d(AB, SC) = AH.

Ta có: \(AH.SD = SA.AD\)

\(\Rightarrow AH = {{SA.AD} \over {\sqrt {S{A^2} + A{D^2}} }} = {{2a\sqrt 3 .a} \over {\sqrt {12{a^2} + {a^2}} }} = 2\sqrt {{3 \over {13}}} a\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)