Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 3.53 trang 132 sách bài tập (SBT) – Hình học 12:...

Bài 3.53 trang 132 sách bài tập (SBT) – Hình học 12: Cho hai mặt phẳng: (P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y...

Cho hai mặt phẳng:
(P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0.
Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.
. Bài 3.53 trang 132 sách bài tập (SBT) – Hình học 12 - ÔN TẬP CHƯƠNG III - PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Cho hai mặt phẳng:

(P1): 2x + y + 2z  +1 = 0  và  (P2): 4x – 2y – 4z + 7 = 0.

Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.

Hướng dẫn làm bài:

Ta có: \(M(x,y,z) \in (P) \Leftrightarrow  d(M,({P_1})) = d(M,({P_2}))\)

Advertisements (Quảng cáo)

\(\Leftrightarrow {{|2x + y + 2z + 1|} \over {\sqrt {4 + 1 + 4} }} = {{|4x - 2y - 4z + 7|} \over {\sqrt {16 + 4 + 16} }}\)

\(\Leftrightarrow  2|2x + y + 2z + 1| = |4x - 2y - 4z + 7|\)

\(\Leftrightarrow \left[ {\matrix{{4x + 2y + 4z + 2 = 4x - 2y - 4z + 7} \cr {4x + 2y + 4z + 2 = - (4x - 2y - 4z + 7)} \cr} } \right.\)

\(\Leftrightarrow  \left[ {\matrix{{4y + 8z - 5 = 0} \cr {8x + 9 = 0} \cr} } \right.\)

Từ đó suy ra phương trình mặt phẳng phải tìm là:  \(4y + 8z – 5 = 0\) hoặc \(8x + 9 = 0\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)