(P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0
. Bài 3.58 trang 132 sách bài tập (SBT) – Hình học 12 - ÔN TẬP CHƯƠNG III - PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau
(P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0
Hướng dẫn làm bài:
Do (P) và (Q) cắt nhau nên \(\overrightarrow {{n_P}} \wedge \overrightarrow {{n_Q}} \ne \overrightarrow 0 \) . Đường thẳng d đi qua M0và có vecto chỉ phương
Advertisements (Quảng cáo)
\(\overrightarrow {{n_P}} \wedge \overrightarrow {{n_Q}} = (\left| {\matrix{{\matrix{B \cr {B’} \cr} } & {\matrix{C \cr {C’} \cr} } \cr} } \right|;\left| {\matrix{{\matrix{C \cr {C’} \cr} } & {\matrix{A \cr {A’} \cr} } \cr} } \right|;\left| {\matrix{{\matrix{A \cr {A’} \cr} } & {\matrix{B \cr {B’} \cr}} \cr} } \right|)\)
Do đó phương trình tham số của d là: \(\left\{ {\matrix{{x = {x_0} + \left| {\matrix{{\matrix{B \cr {B’} \cr} } & {\matrix{C \cr {C’} \cr} } \cr} } \right|t} \cr {y = {y_0} + \left| {\matrix{{\matrix{C \cr {C’} \cr} } & {\matrix{A \cr {A’} \cr} } \cr} } \right|t} \cr {z = {z_0} + \left| {\matrix{{\matrix{A \cr {A’} \cr} } & {\matrix{B \cr {B’} \cr} } \cr} } \right|t} \cr} } \right.\)
Đặc biệt phương trình trên cũng là phương trình đường thẳng là giao của hai mặt phẳng cắt nhau (P): Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0 với M0 là điểm chung của (P) và (Q).